State of North Carolina Department of Environment, Health and Natural Resources Division of Solid Waste Management James B. Hunt, Jr., Governor Jonathan B. Howes, Secretary Camen Johnson Docion 4 14-07 Johnson 4 14-07 October 8, 1993 Mr. Jack Horton, County Manager Haywood County Courthouse Waynesville, NC 28786 RE: Permit To Operate White Oak Sanitary Landfill Permit No. 44-07 Dear Mr. Horton: The Division has received additional information from DSA Design and LAW Engineering to supplement the construction documentation for the referenced facility. The Division has re-evaluated its 29 Sept 93 decision based on this new information. This decision allows Haywood County to operate the constructed landfill unit according to the conditions of the Permit to Construct and the terms of this approval. Based on the information submitted to date, the Division has determined that the design revisions made to the leachate surface impoundment require a more detailed evaluation prior to making a final decision for compliance with the applicable performance standards. Furthermore, this Permit to Operate sets forth additional conditions for leachate management related to the surface impoundment. ### Landfill Unit Design Modifications The Division has determined that Haywood County and the project engineers have met the pre-operative conditions of the Permit To Construct (issued July 22, 1992) for the landfill unit. In accordance with G.S. 130A-294, the constructed landfill unit is approved to receive waste. In accordance with Condition C-1.b, the Division has accepted the following modifications to the approved plan which have been adequately documented by the project engineers to meet the applicable performance requirements: - 1. Terraces of benches in the side-slopes replace the pipe slope drains for stormwater management in inactive landfill areas. - 2. Modification to the design of the Spring Relief Box system, including additional finger drain connections to relieve isolated groundwater seeps encountered during general excavation and undercutting. - 3. Limited rock excavation and grading revisions (raised design elevations) due to competent rock encountered during excavation. - 4. Revisions to the Erosion and Sediment Control Plan approved by the N.C. Land Quality Section August 10, 1993 and illustrated in Approved Plan Document #9 (Attachment 2). Excavation of soils below previous existing grade for use as borrow soil for daily cover requires prior approval from the Division, unless it is authorized by the existing Approved Plan. #### General Receipt of solid waste prior to October 9, 1993 will classify this unit as an existing MSWLF unit, subject to requirements of 15A NCAC 13B SECTION .1600. Construction of remaining fraction of the landfill authorized by the Permit to Construct is subject to the criteria and requirements for Permit Renewal (as a lateral expansion); Haywood County shall place a notice in the operating record scheduling construction of this area and subsequently, make the demonstrations required by 15A NCAC 13B .1604 (b)(2)(P). As alluded to in some documents, expansion of the landfill beyond the area authorized by the Permit to Construct will require a New Facility permit. Generally, 15A NCAC 13B SECTION .1600 describes the complete requirements for this facility on and after October 9, 1993. Rule .1604 establishes general permit conditions for all new and existing MSWLF Facilities. This facility must conform to the general standards for operation [.1626], closure and post-closure [.1627], and groundwater monitoring [.1630 - .1637]. Specific requirements for this facility are: (1) set forth in the Conditions of the Permit to Construct, edited according to new rule references listed in Attachment 1 - Revision to Rule References for Existing MSWLF Facilities, October 9, 1993 and; (2) further described by the conditions of this approval. As the owner/operator of an existing MSWLF unit, Haywood County must submit a Transition Plan application according to the criteria and requirements set forth in Rules .1603(a)(4)(A) and .1617(d). Copies of current information in the permitting record may be utilized in the submittal. # Additional Approved Plan Documents Construction documents submitted with the CQA Report have been filed in the permitting record. Supplemental to the plans approved in the Permit to Construct, additional documents and correspondence included as part of the Division Approved Plan are listed in Attachment 2 - Additional Approved Plan Documents, October 8, 1993. # Groundwater Monitoring See Attachment 3 for the Conditions applicable to the landfill unit's Water Quality Monitoring Plan. # Leachate Surface Impoundment and Leachate Management ## Design Modifications After reviewing all the information available, the Division has determined that the demonstrations made by the project engineers are not adequate to determine compliance with the following standards: - 1. 15A NCAC 13B .0503 (2)(d) requires a minimum separation from solid waste (leachate) to the seasonal high water table. Specific to the leachate surface impoundment, this requirement was further described in the 11 Dec 90 "Site-Specific Design Requirements" for the 104 acre site. As installed, the surface impoundment is approximately 8 ft. deeper than the Approved Plan design and in an area where the potentiometric surface is at or near the ground elevation. Also, a culvert has been installed over an area previously described as a ground water discharge feature; the installation of this structure potentially effects the hydrogeologic conditions in the area of the impoundment. - 2. 15A NCAC 13B .0601 requires groundwater monitoring capability as the Division determines to be necessary to detect the effects of leachate storage on groundwater in the area. The water quality monitoring plan in the Approved Plan primarily depended on the maintenance of the groundwater discharge feature (now filled over) to monitor the performance of the surface impoundment. The modifications, including the underdrain system, to the design effectively change the localized hydrogeologic conditions near the impoundment. The nature and extent of the modifications to the surface impoundment will require further subsurface investigation and evaluation to demonstrate compliance with the rules cited above. It is possible that the findings of this assessment may require re-design of the surface impoundment and removal of the 48" culvert and structural fill. In any event, the Division believes that this evaluation can be accomplished expediently. According to our discussions with DSA today, Haywood County will make every effort to clarify this issue and can operate the landfill while minimizing the function of the impoundment for leachate storage. Until Haywood County provides adequate data and information to demonstrate that the constructed surface impoundment meets the rules cited above or re-designs the facility to be consistent with the Approved Plan, the Division hereby modifies the conditions of Permit No. 44-07 to include the following "OPERATION" condition for temporary leachate management: - 7. Temporary leachate management. Haywood County shall at all times minimize the accumulation of leachate in the surface impoundment until the Division approves the use of the impoundment for leachate storage. - 8. Level measurement in surface impoundment. Haywood County shall monitor and record the leachate level in the surface impoundment on a daily basis, seven days a week. The date, time, and measurement shall be initialized by the #### operator. Based on the containment design of the impoundment and the stormwater segregation design for the landfill, the Division agrees with DSA Design that the utilization of the constructed impoundment as temporary component of the leachate management system does not represent a public health hazard. Certainly, leachate will be collected and treated at this facility; contrary to an unlined landfill which does not control leachate. Should you have any questions regarding the terms of this approval, please contact me at (919) 733-0692. Sincerely, James C. Coffey, Supervisor Permitting Branch Solid Waste Section cc: Jim Patterson Julian Foscue Jan McHargue Bobby Lutfy ## ATTACHMENT 1 # Revision to Rule References for Existing MSWLF Facilities October 9, 1993 Permit references for Existing MSWLF Facilities shall be revised as follows for MSWLF units that receive waste on or after October 9, 1993: | Subject Requirement | Old Citation | New Citation | | |----------------------|--------------|--------------|--| | Operating procedures | .0505 | .1626 | | | Groundwater Quality | .0503(2)(d) | .1630 | | | Closure standards | .0510 | .1627 | | #### **ATTACHMENT 2** # Additional Approved Plan Documents October 8, 1993 The following supplemental documents are incorporated in the Division Approved Plan for Permit No. 44-07: - 9. Erosion & Sediment Control Plan Drawing (one Sheet) with N.C. Land Quality Approval; DSA Design Group; July 1993. - 10. Operations Supplemental Document; DSA Design Group; September 1993. #### ATTACHMENT 3 #### APPROVAL OF FINAL WATER QUALITY MONITORING PLAN FOR THE PERMIT TO OPERATE FACILITY: Haywood County White Oak Landfill PERMIT NO. 44-07 The Monitoring And Reporting Requirements required in the Permit to Construct have been met. Monitoring wells have been installed and baseline samples of the ground and surface water sampling locations has been taken. The Water Quality Monitoring Plan is approved with the following conditions: - 1. The base-line sampling and analysis results have not yet been evaluated. Should any constituents be reported at levels above the N.C. Groundwater Quality Standards, then additional evaluation shall be required in order to establish the background values. - 2. Further evaluation of the design and construction of the monitoring wells shall be required and some of the wells may have to
be replaced or modified in design. - 3. A report shall be submitted to the Solid Waste Section that includes information on the direction and rate of ground-water flow and statistical analysis of the ground-water quality data. - 4. The Water Quality Monitoring Plan shall be modified to be consistent with the newly adopted Solid Waste Management Rules for MSWLF units. Some changes may also become necessary to the monitoring plan to make it consistent with forthcoming policies by the Solid Waste Section that may be required to clarify the rules and provide consistency in the water quality monitoring program for MSWLF facilities in North Carolina. PERMIT NO. 44-07 PART 2: PERMIT TO OPERATE DATE ISSUED 10-08-93 #### STATE OF NORTH CAROLINA # DEPARTMENT OF ENVIRONMENT, HEALTH, AND NATURAL RESOURCES #### DIVISION OF SOLID WASTE MANAGEMENT P.O. BOX 27687 RALEIGH, NC 27611 #### SOLID WASTE PERMIT **Haywood County** is hereby issued a Permit to Operate the White Oak Sanitary Landfill accessed via SR 1338 near White Oak in accordance with Article 9, Chapter 130A, of the General Statutes of North Carolina and all rules promulgated thereunder and subject to the conditions set forth in Part 1: Permit to Construct # 44-07, issued July 22, 1992, and as modified October 8, 1993. james C. Coffey, Supervisor Permitting Branch Solid Waste Section Division of Solid Waste Management White Oak Sanitary Landfill Haywood County, North Carolina DSA Project No. 92052.03 September, 1993 # White Oak Sanitary Landfill Haywood County, North Carolina #### A. Liner - 1. Protection of the liner is of the utmost concern. Exercise care while at side slopes and exercise care until bottom is covered. Restrict turning and gouging machine activity on Landfill "flats" surface. Visually inspect solid waste loads and spread load for presence of long objects that may puncture liner such as bicycle forks or handle bars or steel rods etc. - 2. The flexible membrane liner (FML) is 60 mil thick on the "flats", and 80 mil thick textured on the side slopes. The FML is made of high density polyethylene or HDPE. This material is thermostat inert presently economically available under today's technology. The 60 mil and 80 mil [60(80) one thousands or 6/100 (8/100) inch thick] HDPE liner is the same material commonly used for plastic milk jugs. However, it has about 3% carbon black for enhancing stability of the polymer chain and to give the materials resistance to ultraviolet light. - 3. The liner is susceptible to certain organics, such as vegetable (Wesson oil) fuel oils, lubricants and solvents. Remember, likes dissolve likes-chemically speaking. Avoid hydraulic fluid leaks and changing of oil or other fluids with in the Landfill. - 4. CAUTION Should the Landfill base be cut, gouged, eroded or otherwise exposed, the area should be inspected for integrity before covering. Should there be a tear in the liner then the area should be roped off and properly marked with signs until special repair personnel can be summoned. - 5. No sharp objects should be allowed on or driven into the Landfill base. - 6. Equipment that becomes stuck on Landfill base must not be moved by rocking or digging in for traction. It must be winched out. - 7. The soils surface on the "flats" must be maintained by light grading and replenishment of erosion rivulets. Care must be exercised not to overgrade. - 8. The "flats" liner system is as follows from bottom up: - a. Prepared subgrade of insitu sandy-silts, compacted with a steel wheel roller and roughened to effect a cohesive surface to accept the subbase soil liner. - b. The subbase soil liner is 2 feet thick and consists of native soils blended with approximately 7% sodium bentonite. The blended soils was mixed in a pugmill and placed and compacted to a minimum 92% standard Proctor. This soil layer has a permeability in the range of 8 to 3 x 10⁻⁸ cm/sec. #### White Oak Sanitary Landfill Haywood County, North Carolina (continued) - b. The HDPE reported has a permeability of approximately 1 x 10⁻¹⁴ cm/sec. The HDPE, frequently referred to as flexible membrane liner (FML) is the material which serves as a barrier to prevent leachate from migrating down into the groundwaters and acts as the "drip pan" which conveys the leachate to system piping and out of the Landfill. - c. 12 ounces per square foot (nominal) non-woven geotextile fabric. The material is gray polypropylene and looks like felt. Its purpose is two-fold: 1.) cushion between HDPE liner and the washed stone and 2.) to add flexural strength to the HDPE/Geotextile layer. The fabric also transmits fluids. It can be recognized as gray material until becomes contaminated at which time it most likely will appear black as does leachate. - d. Washed stone. the stone is 1/2 to 1 inch nominal size. The stone layer is 12 inches thick and its purpose is to transmit fluid (leachate). Additionally the 12 inch layer serves as a cushion or buffer between the HDPE liner and the equipment and solid waste loads imposed on the liner. The stone layer also contains perforated leachate pipes discussed later. - e. Native sandy-clayey soils 12 inches thick and compacted comprise the "flat" Landfill surface onto which baled waste is to be received. Its purposes are to: - 1. Provide a cushion or protective barrier for the HDPE liner. - 2. Provide and economical surface upon which to operate equipment. - 3. Provide a surface compacted and maintained which encourages stormwater runoff in preference to percolation. - 9. The "slopes" liner system is as follows from lower surface to upper: - a. Prepared subgrade embankment cuts and minimal fills. The surfaces were compacted and surface roughened to receive the subbase soil liner onto an obstruction free surface so that cohesion between the two soil layers would occur. - b. The subbase soil liner is 2 feet thick and consists of native soils blended with approximately 7% sodium bentonite. The blended soils was mixed in a pugmill and placed and compacted to a minimum 92% standard Proctor. This soil layer has a permeability in the range of 8 to 3 x 10⁻⁸ cm/sec. - c. Textured 80 mil HDPE liner. The liner is textured on both faces for slope stability and to provide friction to maintain the protective soil layer on the slopes, it also serves as a liquid barrier. #### White Oak Sanitary Landfill Haywood County, North Carolina (continued) - d. A twenty-four inch thick (normal to surface) layer of native soil on top of a 12 oz. layer of nonwoven geotextile fabric placed on the textured HDPE serves to transmit leachate and to provide a protective buffer over the HDPE. The layer also contains the leachate cleanout pipe. Additionally, this layer shall be placed intermittently during operation of the facility [Ref. Item B.4, this document]. - e. Along the protective cover layer ultraviolet 12 oz. nonwoven geotextile fabric sandwiches the 2 foot thick layer of soils which overlays the textured HDPE which is anchored in a 10 foot wide by 2 foot depth trench. #### B. Operations - 1. Placement of solid waste will begin in cell I of Phase I. Phase I is the entire 10+ Acre Landfill. The limits of the flexible membrane liner shall be marked in the field and maintained so that waste placement will be contained within the limits of the facility. - 2. Waste (bales) shall be placed starting at the highest elevation in each cell. - 3. Waste (bales) should be kept to the minimum surface area possible and placed at a 5 (bottom) to 1 (high) ratio to prevent the bales from falling over. Surface area (active Landfill area) should be kept to a minimum for 2 reasons: (1) to minimize the amount of daily cover soils needed and conversely (2) to maximize the amount of garbage (not soils) being placed thereby increasing the life of the Landfill. - 4. The phasing plan in the construction drawings should be followed. It is the intent (to the extent that safe operation on sloped surface allow) that each cell be brought to the maximum elevation possible before overflowing Landfilling operation into an adjacent cell. This will be ensured through progressively placing the protective cover along the sideslopes as waste placement enters each lift. Placement of the protective cover will be limited to one lift at a time (lifts are 12 feet high which provides a 3:1 sideslope length of 36 feet). The superficial layer of UV rated nonwoven geotextile shall be rolled up the sideslope so the protective cover can be installed on top of the underlying layer of nonwoven geotextile and FML. Once the protective soil cover is installed to a nominal depth of 24 inches, the rolled geotextile shall be laid on top of the protective cover to provide erosion control. The superficial geotextile may be cut from time to time to facilitate easier removal of the geotextile during placement of protective cover. To allow for proper documentation that at least 24 inches of protective cover has been installed, the Landfill Operations Manager/Coordinator or designated qualified individual will assist the landfill operator in establishing the grades along the sideslopes for the installation of the soil. At the completion of the protective cover installation, a certificate stating the protective cover was installed in accordance with the operations permit shall be entered into the operating record for the facility. #### White Oak Sanitary Landfill Haywood County, North Carolina (continued) - 5. Sequencing of cells in the proper order is necessary to manage the stormwater diversion system (discussed later). Briefly, in the unused portion of the facility exist temporary stormwater diversion devices convey stormwater that falls with in the facility outside to awaiting perimeter drainage features and eventually to the sediment basin. As waste placement comes in contact with these temporary stormwater devices, these temporary devices must be abandoned because the stormwater now comes in contact with waste, whereby becoming leachate. The
abandonment of these devices must be recorded and certified by a registered professional engineer allowed to practice in the State of North Carolina. This certification must be entered into the operational record of the facility. Further, the landfill operator shall notify the field representative for the Division of Solid Waste Management of the abandonment of temporary stormwater diversion devices. - 6. It is intended that the upper cells be brought to final grade and that final cover be place as soon as practicable in order to control runoff and in order to cause runoff instead of percolation of rain waters which will eventually become leachate or be tributary to the leachate lagoon as excess flows. - 7. It is IMPORTANT to remember that decaying wastes will eventually generate leachate and methane. Methane is an explosive and lethal gas which is lighter than air and thus can be trapped underside of structures and equipment. The chief operator should have the Landfill and structures tested for methane gas concentrations at least semi-annually and instruct all personnel in its dangers. - 8. Daily cover for operation will be obtained from those areas immediately south of Phase I. The area south of Phase I is anticipated for future expansion of the facility. - 9. When weather and soil conditions so dictate, daily cover soils are available from the spoil piles north and west of Phase I. - 10. It will be necessary for operators to grade repair, and smooth Landfill surfaces as needed and to capture and replace sediment soils that may have migrated to the surface or subsurface drainage features. - 11. Upon a rain event of extended duration or high intensity it may be necessary to suspend Landfilling operations until the waters drain off and the surface soils are passable to traffic. With the design of a lined Landfill, one objective was to allow and cause runoff but to control surface water velocities by ponding to lessen the possibilities of erosion and sediment transport. - 12. It may be necessary to install silt fence barriers within each cell to retard erosion. #### White Oak Sanitary Landfill Haywood County, North Carolina (continued) #### 13. Fire Hazard By keeping the Landfill clean and the waste covered daily, the potential for fire hazard can be lessened. Fires within the waste can be best controlled by digging out the burning material, spreading and then recovering it with dirt. Fire extinguisher should also be readily available. Arrangements will be made with local fire fighters to establish procedures for extinguishing Landfill fires. In case of fire, dial 911. #### 14. Fire Prevention The Landfill operator will be responsible for prohibiting accepting highly inflammable materials or burning in the Landfill. Cigarettes, lighters or any type of burning should be prohibited in the active areas. The use of non sparking tools when repairing equipment near the waste is recommended and is a prudent measure in lessening the chances for creating sparks that could cause explosion by ignition of methane or other volatiles near the active Landfilling areas. #### C. Leachate and Stormwater Management - 1. The design employs a dual drainage system to: 1) collect leachate and 2) pass (divert) stormwater to the extent possible. It is IMPORTANT to realize from a regulatory and water quality stand point that all waters that enter a cell receiving waste are regarded as CONTAMINATED. - 2. In cell 1 all water will enter the leachate (subsurface) piping system. Percolated water will enter the subsurface piping system directly through the garbage-soil-stone layers. Runoff (surface waters) will be diverted to perimeter drainage features by temporary piping and conveyed to the sediment basin. - 3. In subsequent cells (until they are activated) storm runoff will flow across the smooth maintained protective cover surface through the temporary outlet pipes (waste cells 2 and 3) and flow down the perimeter drainage ditches to the sediment basin. - 4. The berms dividing the cells are subject to overflowing if a high intensity rainstorm (in excess of the 25 year event) occurs but it is intended that this will retard sediment transport by creating a pond in the cells thereby, decreasing water land flow velocities. - 5. When garbage placement is started in a new cell the temporary storm pipe will be removed and/or abandoned from that cell so as to cause all waters falling into that cell to be directed to the subsurface (or contaminated water) leachate piping system and thence routed to the leachate holding pond. The abandonment and/or removal of the temporary storm piping will require certification by a registered professional engineer [Ref. Item B.5, this document]. - 6. As the northern cells are completed the surfaces should be sloped away and ditched away from the Phase I Landfill to the extent possible to minimize potential for leachate generation and to minimize the amount of stormwater flowing into the Landfill. #### White Oak Sanitary Landfill Haywood County, North Carolina (continued) 7. Cleanouts are located outside the Phase I cell. The operator should inspect (visually and by measure) leachate flow quantities regularly. Should leachate quantities decrease for reasons other than long term dry weather then the cleanouts should be flushed and or rodded. CAUTION: the cleanouts if rodded should not be rodded with sharp abrasive, or puncturing equipment. JAN 3 1 1994 January 27, 1994 Mr. Keith Burris Solid Waste Coordinator Haywood County Solid Waste Management 1 Recycle Road Waynesville, NC 28786 SUBJECT: OPERATIONS AND FACILITY INSPECTION - WHITE OAK SANITARY LANDFILL HAYWOOD COUNTY, NC DSA PROJECT NO. 92052,10 Dear Mr. Burris: At your request, we conducted an on-site review of the White Oak Sanitary Landfill Facility located off of SR 1338. We observed waste delivery, placement, cover soil placement, drainage and erosion control, and leachate collection. The site was heavily saturated from the recent snow and rain that has deluged the area for the past few weeks. The concentration of runoff was witnessed in the stormwater conveyance channels during the site visit. Soil conditions made the facility operations difficult and access to the waste unit was difficult, but manageable. We witnessed a small rill in the soils covering the northern sideslope of Waste Cell No. 1. The rill was located approximately 5 to 7 feet above the anchor trench for the flexible membrane liner. This cover soil layer consisted of approximately 4 to 6 inches of material and was saturated from surface water runoff. We observed leachate draining from the rill, which the County had contained and piped to the leachate holding pond. We have estimated that the lack of having sufficient cover material on the sideslope, in hand with upgradient (north to south) waste placement, was the cause of this problem. Upgradient waste placement has caused surface water ponding at the working face creating head pressure that possibly caused the leachate emergence. The lack of cover material along the sideslope, along with being completely saturated, made it easier for the leachate to surface. Two (2) tasks will be necessary to correct this problem. The County should complete the waste placement in the current lift by filling the area in front of the working face then begin waste placement downgradient (south to north). The intent is to avoid ponding or traps. Additionally, the areas downgradient from the "new" working face should have enough cover so that waste is not exposed, thereby, allowing surface water to runoff into the adjacent drainage ditches as approved in the Operation Permit issued by the NC Division of Solid Waste Management (DSWM). Secondly, when the site has had time to drain, intermediate cover, sufficiently compacted, should be placed along the sideslopes of the waste cell as each individual lift is commenced. Intermediate cover as defined in the Operation Permit for the facility should mitigate potential leachate migration and direct leachate flow to the collection system. Mr. Keith Burris Solid Waste Coordinator Haywood County Solid Waste Management January 27, 1994 Page No. 2 It should be noted that Haywood County has received a significant amount of precipitation to date, and by implementing the tasks noted above, the facility will be better suited to this type of weather conditions. It was also observed that the storm diversions and stormwater reduction measures incorporated into the design are functioning as evidenced by the minute quantity of water in the leachate pond. We trust this site visit and operational review will be useful in your continued solid waste management practices at the White Oak Sanitary Landfill. $\sim W \cdot l$ Norman E. Divers, III Project Manager Civil/Environmental Department /ned cc: Mr. Jack Horton, County Manager - Haywood County Mr. Gary D. McKay, P.E. - Haywood County Mr. Gerald W. Horton, P.E. - DSA Design Group File # State of North Carolina Department of Environment, Health, and Natural Resources Division of Solid Waste Management P.O. Box 27687 · Raleigh, North Carolina 27611-7687 James G. Martin, Governor William W. Cobey, Jr., Secretary William L. Meyer Director July 23, 1992 Mr. Jack Horton, County Manager Haywood County Courthouse Waynesville, NC 28786 RE: Permit to Construct the Haywood County Sanitary Landfill Permit No. 44-07, Part 1 Dear Mr. Horton: The referenced Solid Waste Permit is issued in accordance with N.C.G.S. 130A-294 and the North Carolina Solid Waste Management Rules, codified at 15A NCAC 13B. You received the original and the certified copy yesterday. The facility description includes 104 acres, with approximately 10 acres delineated as the permitted disposal area. The approved plan is described by the documents listed in Attachment 1. Buffer distances are delineated on the approved plan drawings. The Conditions of Permit describe the requirements for construction of the landfill systems,
preoperation submittals, and subsequently, operation and monitoring of the landfill unit. Condition G-3 describes the relationship between the approved plan and the Conditions of Permit. Conditions for Construction (C-1, 2, 3) note the design modifications in Document #5, describe the standard and specific requirements for construction, and outline the pre-operative requirements. Three standard submittals are required in order to qualify the landfill unit to begin receiving waste. Part 2: Permit to Operate must be issued prior to receiving waste in the constructed unit. The Conditions for Operation (O-1 - O-6) define the service area, outline specific management plans and operating procedures, and require submittal of a plan prior to beginning closure of the landfill. Specifications for the final cover system will be dependent on the implementation of 40 CFR 258.60; a clarification of this rule was recently published by EPA and is attached for your information. Proposed regulations under the Clean Air Act may affect the management of landfill gas produced by the landfill. The Conditions for Operation will be supplemented by the Permit to Operate. Monitoring and Reporting Requirements are described in Conditions M&R-1 through 8. Groundwater monitoring wells, surface water sampling locations, and a sampling plan for the spring relief system are required to monitor the performance of the landfill's environmental controls and its operation. Please note that Conditions G-5, C-1.b, C-1.c, C-3.b, C-3.h and M&R-1.c, and M&R-7 require notification and/or correspondence with the SWS. All correspondence during construction should be directed to Gary Ahlberg at (919) 733-0692. The regional Waste Management Specialist for this facility is Mr. Jim Patterson. He can be reached at the Asheville Regional Office at (704) 251-6208. Please call if you have any questions regarding the terms of this permit. Sincerely, James C. Coffey, Supervisor Permitting Branch Solid Waste Section cc: Julian Foscue Jan McHargue Jim Patterson **Dexter Matthews** John Runkle Carolyn Gann **DSA Design Group** PERMIT NO. 44-07 PART 1: PERMIT TO CONSTRUCT DATE ISSUED 07-22-92 #### STATE OF NORTH CAROLINA ### DEPARTMENT OF ENVIRONMENT, HEALTH, AND NATURAL RESOURCES #### DIVISION OF SOLID WASTE MANAGEMENT P.O. BOX 27687 RALEIGH, NC 27611 #### SOLID WASTE PERMIT **Haywood County** is hereby issued a permit to construct a SANITARY LANDFILL accessed via SR 1338 near the White Oak Community in accordance with Article 9, Chapter 130A, of the General Statutes of North Carolina and all rules promulgated thereunder and subject to the conditions set forth in this permit. The facility is located and described by the legal description of the site on the attached sheet. James C. Coffey, Supervisor Permitting Branch Solid Waste Section #### SOLID WASTE PERMIT Part 1: Permit to Construct #### CONDITIONS OF PERMIT: #### GENERAL - 1. This permit shall not be effective unless the certified copy is filed in the Register of Deeds Office, in the grantor index under the name of the owner of the land in the county or counties in which the land is located. After recordation, the certified copy shall be returned to the Solid Waste Section and shall have indicated on it the page and book number, date of recordation, and Register's seal. - 2. When this property is sold, leased, conveyed or transferred, the deed or other instrument of transfer shall contain in the description section in no smaller type than that used in the body of the deed or instrument a statement that the property has been used as a sanitary landfill. - 3. The approved plan is described by <u>Attachment 1</u>, "List of Documents for Approved Plan". Where discrepancies may exist, the most recent submittal and the Conditions of Permit shall govern. Some components of the approved plan are reiterated in the Conditions of Permit. - 4. This permit will be subject to review every five years as per 15A NCAC 13B .0201(c), according to the issuance date of the Permit to Operate. Upcoming amendments to the Solid Waste Management Rules, in accordance with the new Federal Regulations 40 CFR 258, may necessitate modifications to this facility prior to the review date. - 5. Haywood County (the permittee) shall notify the Division of Solid Waste Management (DSWM), Solid Waste Section (SWS) and conduct a pre-construction meeting on-site prior to initiating construction activities. If construction does not commence within 18 months from the issuance date of this permit, then the permittee shall obtain written approval from the SWS prior to construction and comply with any conditions of said approval. - 6. Prior to receiving waste at this facility, a Permit to Operate must be obtained. The requirements for this part of the Solid Waste Permit are described in the following section (Construction), Condition 3. The Conditions of Permit issued herein shall also be incorporated in the Permit to Operate. - 7. This permit is not transferable. - 8. Within two (2) years from the issuance date of the Permit to Operate, the permittee shall submit a Contingency Plan for managing the volume of ground water discharged from the spring relief system, assuming it was contaminated by leachate. Data from the monitoring requirements specified in this permit shall be incorporated in this plan. #### CONSTRUCTION - 1. This construction permit is for development of the Haywood County Sanitary Landfill and the on-site environmental management facilities, in accordance with the approved plan and as specified herein. - a. The components of the engineered systems shall be specified and constructed to meet the performance requirements established by the facility design. - b. Relative to the established performance requirements, design revisions and/or requests for variance, will be reviewed by the agency and accepted or rejected. - c. When excavating to sub-base grades, the permittee shall notify the SWS: - (1) if bedrock or other unpredicted subsurface conditions are encountered; - when the excavation for the landfill unit and/or surface impoundment is approximately 14 days from completion. - d. A minimum 25-foot buffer shall be established between soil stockpile areas and any surface waters. Stockpile areas shall be adequately stabilized. - e. Construction of any soil liner shall include the following requirements: - (1) Based on laboratory testing, the minimum soil properties shall be specified prior to construction. - (2) For each soil type to be used, the methods and quantities of bentonite necessary to attain the required permeability shall be predetermined using laboratory testing. - (3) A test pad shall be constructed to establish the construction details, such as the moisture content/density/compaction relationship. A minimum of three (3) random, undisturbed samples shall be tested for permeability according to the specified ACOE method. The methodology and testing criteria from the test pad shall be incorporated in soil liner construction. - (4) The soil liner shall be overbuilt or otherwise protected from weathering prior to placement of the geomembrane. - f. The geotextile material placed below the stone drainage layer shall be specified to provide adequate protection to the geomembrane liner under maximum loading conditions. - g. The specification requirements for the drainage layer and protective cover are described by Document # 5 of the approved plan. - h. The main leachate removal lines and manholes shall be constructed to be watertight. i. An emergency shut-in valve, with appropriate material properties, shall be installed in the leachate discharge line. j. Wetland impacts shall be managed in accordance with the U.S. Army Corps of Engineers and N.C. DEM requirements. k. Construction Quality Assurance (CQA) activities shall be documented and summarized in a CQA report and illustrated with as-built drawings. The CQA Report and Document Drawings shall bear an imprint of the registration seal of the engineer licensed to practice in the State of North Carolina. 1. The CQA report will include the following at a minimum: - (1) A summary of the methodology, modifications, and construction quality control measures necessary to demonstrate that the facilities were constructed in accordance with the approved plans and as specified herein; and - (2) A summary of the actual materials and methodology implemented to construct and test any compacted soil liner; and - (3) Documentation of the thickness (using survey data) of any soil liner, drainage layer, and protective cover, constructed grades (for HDPE liner), and location and grades for all LCRS and spring relief piping. - 2. All sedimentation/erosion control activities will be conducted in accordance with the Sedimentation Control Act codified at 15 NCAC 4. Native vegetation shall be established on the completed landfill. - 3. The following pre-operative requirements shall be met to obtain a permit to operate this facility: - a. Site preparation shall be in accordance with the construction plan, and the conditions specified herein. - b. Site inspection shall be made by a representative of the Division of Solid Waste Management (DSWM). - c. The permit number and the words "NO HAZARDOUS, OR LIQUID WASTE ACCEPTED" shall be posted on an entrance sign. - d. Upon completion of construction, the permittee will submit the CQA report and document drawings to DSWM; the agency will review the submittal and issue its concurrence that the facility was constructed as specified herein. - f. All necessary Local, State, and Federal permits or approvals to manage leachate must be obtained. These requirements shall be described in a comprehensive Leachate Management Plan, which shall be submitted to DSWM for review and approval. - g. Surface water locations and groundwater monitoring wells (see Monitoring and Reporting Requirements) shall be installed and a baseline sampling performed. - h. In accordance with
Monitoring and Reporting Condition 1., a letter of approval shall be obtained from the Solid Waste Section Hydrogeologist. #### **OPERATION** - 1. This solid waste disposal facility is permitted to receive solid waste according to the approved plan, and as defined in 15A NCAC 13B, .0101(36), except that hazardous waste, lead acid batteries, used oil and liquid waste are prohibited from disposal at this site. - a. Acceptance of specific wastes subject to the Division's "Procedure and Criteria for Waste Determination" shall be in accordance with 15A NCAC 13B .0103 (d). - b. Acceptance of asbestos shall be in accordance with the approved plan and an accurate record shall be maintained for the location of asbestos in the landfill (to prevent future disturbance). Management of asbestos shall be in accordance with all pertinent State and Federal rules and regulations. - 2. Stormwater/leachate segregation is described primarily by Document # 5 of the approved plan. The drainage areas within the landfill unit are defined by the location of intermediate berms between Cells 1, 2, and 3, and by the "sideslope" drains within the cells. Stormwater segregation controls shall be properly abandoned when waste is placed in any drainage area. Abandonment of these structures shall be documented and approved by a registered N.C. Professional Engineer. - 3. The permittee shall maintain a Bear Management Plan as described in Document # 5 of the approved plan. - 4. This facility shall conform to all operating procedures described in the approved plan, in accordance with Section .0505 of 15A NCAC 13B, and as specified herein. - a. All pertinent landfill operating personnel will receive training and supervision necessary to properly operate this landfill. Specifically, training must be provided in operational procedures that will prevent damage to the liner and leachate collection and removal systems. - b. Leachate management, including the monitoring, sampling, storage, transportation, treatment, and ultimate disposal will be conducted in accordance with the approved plan, the conditions specified herein, and all pertinent Federal and State rules and regulations. - c. The use of synthetic daily cover will require prior notification of the SWS Regional Waste Management Specialist. Following a 90 day trial period, the continued use of the alternative material shall require written approval from the DSWM. By this reference, any conditions of said approval shall be incorporated in this permit. - d. Lift height shall be limited to approximately 12 feet. - e. Adequate cover shall be applied to minimize odors. - 5. Ground water quality at this facility is subject to the classification and remedial action provisions referenced in Section .0503 (2)(d) of 15A NCAC 13B. - 6. A closure and post-closure plan must be submitted for approval at least 90 days prior to closure or partial closure of any landfill unit. The plan must include all steps and measures necessary to close and maintain the facility in accordance with all rules in effect at that time. At a minimum, the plan shall address the following: - a. Design of a final cover system which meets the requirements of 40 CFR Part 258.60. - a. Construction and maintenance/operation of the final cover system, erosion control structures, landfill gas control/recovery systems, and leachate management system. - b. Surface water, ground water, and explosive gas monitoring. # MONITORING AND REPORTING REQUIREMENTS - 1. Ground water monitoring wells and monitoring requirements: - a. Monitoring well design and construction shall conform to the specifications outlined in <u>Attachment 2</u>, "North Carolina Water Quality Monitoring Guidance Document for Solid Waste Facilities". The monitoring plan shall be modified as required by the SWS Hydrogeologist. - b. Monitoring wells shall be placed at the six downgradient locations illustrated in the approved plan (Document # 5, wells GMW-1, 2, 3, 4, 5, 6), with one additional background well located upgradient of the landfill. - c. A geologist shall be in the field to supervise well installation. The exact locations, screened intervals, and nesting of the wells shall be established after consultation with the Solid Waste Section Hydrogeologist at the time of well installation. - d. For each monitoring well constructed, a well completion record shall be submitted to DSWM within 30 days upon completion. - e. Prior to the acceptance of any waste at the facility, a baseline sampling event shall be completed. This event shall include all groundwater monitoring wells and shall be consistent with EPA 40 CFR 258.54 (b). - f. Sampling equipment and procedures shall conform to specifications outlined in the above-referenced guidance document, (Attachment 2), or the current guidelines established by DSWM at the time of sampling. The required analytical parameters for detection monitoring shall conform to 40 CFR 258.54 (b) references to Appendix I constituents. - g. The permittee shall sample the monitoring wells semi-annually or as directed by the SWS Hydrogeologist. - h. A readily accessible unobstructed path shall be initially cleared and maintained so that four-wheel drive vehicles may access the monitoring wells at all times. - 2. The permittee shall sample the spring relief system outfall as follows: - a. Quality sampling shall be performed every four months (tri-annually), when a representative sample can be obtained. Flow rate and visual observations shall be recorded at the time of sampling. The samples shall be obtained and analyzed according to the surface water sampling protocol referenced in Condition 1.f. - b. Flow rate shall be measured and recorded monthly. - 3. The permittee shall establish five locations for surface water sampling as described in Document # 5 of the approved plan. SW-1, 2, 3, 4, and 5 shall be sampled and analyzed semi-annually according to the protocol and parameters in Attachment 2, or as required by the SWS Hydrogeologist. - 4. The permittee shall obtain a representative sample of the untreated leachate and analyze the sample for total BOD, COD, and the water quality monitoring parameters referenced in Condition 1.f. of this section. This sampling shall be performed on an semi-annual basis. With approval by DSWM, this sampling event may be satisfied by leachate monitoring performed for compliance with any pertinent leachate management permits and/or requirements. - 5. The permittee shall maintain a record of all monitoring events and analytical data. Reports of the analytical data for each sampling event are to be submitted to DSWM in a timely manner. - 6. The permittee shall maintain a record of the amount of solid waste received at the facility, compiled on a monthly basis. Scales shall be used to weigh the amount of waste received. - 7. On or before 01 Dec 92, and each year thereafter, the permittee shall report the amount of waste received (in tons) at this facility and disposed of in the landfill to the Solid Waste Section, on forms prescribed by the Section. This report shall include the following information: - a. The reporting period shall be for the previous year, beginning 01 July and ending on 30 June; - b. The amount of waste received and landfilled in tons, compiled on a monthly basis, according to Conditions 6 described above; and - c. The report shall be signed by the Haywood County Manager. - 8. All records shall be maintained on-site and made available to the SWS upon request. # ATTACHMENT 1 List of Documents for the Approved Plan The following documents are incorporated as the approved plan for Permit No. 44-07. - 1. Haywood County Site Suitability Permit Application with Aerial Photograph, Oct 1990, prepared by Tribble & Richardson, Inc. - 2. Final Report of Hydrogeology Study, received Sept 1991, prepared by Law Engineering. - 3. Project Design Manual, Volumes I & II, Mar 1992, prepared by Tribble & Richardson, Inc. - 4. Construction Plans for the Haywood County Sanitary Landfill, Sheets 1-17, as revised Mar 1992, prepared by Tribble & Richardson, Inc. - 5. Addenda No. 1 Response to NCDSWM Comments, May 1992, prepared by DSA Design Group of NC, Inc. - 6. Clarification to Addenda No. 1, 08 Jul 92, DSA Design Group. - 7. Letter of Approval, 22 Oct 91, Asst. Regional Engineer, Land Quality Section. - 8. Sedimentation and Erosion Control Plan Correspondence, 24 Jun 92, Asst. Regional Engineer, Land Quality Section. # Permit Renewal, Landfill Expansion Waste Cell 4 Construction White Oak Sanitary Landfill # TABLE OF CONTENTS | 1. WASTE CELL 4 PERMIT APPLICATION OVERVIEW | | |--|-------------| | 2. FACILITY BACKGROUND INFORMATION | 2- 1 | | 3. FACILITY PLAN | 3-1 | | 3.1 WASTE STREAM | 3-1 | | 3.1.1 Types of Waste | | | 3.1.2 Average Monthly Disposal Rates and Estimated Variance | 3-1 | | 3.1.3 Area Served by Facility | 3-1 | | 3.1.4 Procedures for Segregated Management at Different On-Site Facilities | 3-1 | | 3.1.5 Equipment Requirements for Operation of the MSWLF Unit | 3-2 | | 3.2 LANDFILL CAPACITY AND ANALYSIS OF LANDFILL AND SOIL RESOURCES | 3-2 | | 3.3 CONTAINMENT AND ENVIRONMENTAL CONTROL SYSTEMS | 3-3 | | 3.4 LEACHATE MANAGEMENT | 3-4 | | 3.4.1 Leachate Collection Performance and Design | | | 3.4.2 Normal Operating Conditions | 3-6 | | 3.4.3 Leachate Management System | 3-6 | | 3.4.4 Leachate Management Contingency Plan | 3-8 | | 4. ENGINEERING PLAN | 4-1 | | 4.1 ANALYSIS OF FACILITY DESIGN | 4-1 | | 4.1.1 Foundation and Base Liner System | 4-1 | | 4.1.2 Cap System | 4-2 | | 4.1.3 Leachate Storage Facilities | 4-3 | | 4.2 SUMMARY OF FACILITY DESIGN | 4-3 | | 4.2.1 Analytical Methodology | | | 4.2.2 Completion of Location Restriction Demonstrations | | | 5. CONSTRUCTION QUALITY ASSURANCE PLAN | 5-1 | | 5.1 INTRODUCTION | 5-1 | | 5.2 MANAGEMENT ORGANIZATION | 5-1 | |---
------| | 5.2.1 White Oak Sanitary Landfill | 5-1 | | 5.2.1.1 General Manager | 5-1 | | 5.2.1.2 Site Engineer | 5-2 | | 5.2.2 Design Engineer | 5-2 | | 5.2.3 General Contractor | 5-2 | | 5.2.4 Geosynthetic Contractor/Manufacturer | 5-2 | | 5.2.5 Construction Quality Assurance Consulting Firm | | | 5.2.5.1 Certifying Engineer | | | 5.2.5.2 CQA Site Project Manager | 5-3 | | 5.2.5.3 CQA Senior Technician | | | 5.2.6 Laboratory Testing | 5-3 | | 5.2.6.1 Soil Laboratory | 5-3 | | 5.2.6.2 Geosynthetic Laboratory | 5-3 | | 5.2.7 Surveying | 5-4 | | 5.2.8 Project Work Plan | 5-4 | | 5.2.8.1 Pre-Construction Meetings | | | 5.2.8.2 Roles and Responsibilities | | | 5.2.9 Definitions | 5-5 | | 5.2.9.1 Construction Quality Assurance | 5-5 | | 5.2.9.2 Construction Quality Control | 5-5 | | 5.2.9.3 Design Engineer | 5-6 | | 5.2.9.4 General Contractor or Contractor | | | 5.2.9.5 Construction Quality Assurance Consultant | | | 5.2.9.6 CQA Project Manager | | | 5.2.9.7 CQA Site Project Manager | 5-6 | | 5.2.9.8 CQA Monitor(s) | 5-6 | | 5.2.9.9 Owner | | | 5.2.9.10 Project Manager | | | 5.3 DOCUMENTATION PROCEDURES | 5-7 | | 5.3.1 Standard Reporting Procedures | 5-7 | | 5.3.1.1 Applicable Forms | 5-7 | | 5.3.2 Problem/Deficiency Identification and Corrective Action | 5-8 | | 5.3.3 Plan Modification | 5-9 | | 5.3.4 Scope Change | 5-9 | | 5.3.5 Photographic Documentation | 5-9 | | 5.3.6 Final Construction Documentation Report | 5-10 | | 5.3.6.1 Draft Table of Contents | 5-10 | | 5.3.6.2 Draft List of Drawings | 5-11 | | 5.3.7 Site Surveying Requirements | 5-11 | | 5.4 EXCAVATION | 5-11 | | 5.4.1 General | 5-11 | | 5.4.1.1 Scope of Work | 5-11 | | 5.4.1.2 Handling of Material | 5-12 | | 5.4.1.3 Lines and Grades | 5-12 | |---|------| | 5.4.1.4 Cuts and Slopes | | | 5.4.1.5 Excess Excavation | | | 5.4.1.6 Disposal of Excavated Materials | | | 5.4.2 Site Preparation | 5-13 | | 5.4.2.1 General | | | 5.4.2.2 Clearing | 5-13 | | 5.4.2.3 Grubbing | | | 5.4.2.4 Stripping | 5-14 | | 5.4.2.5 Disposal of Material | 5-14 | | 5.4.3 Access Roads | 5-14 | | 5.4.4 Borrow Areas | 5-15 | | 5.5 FILL PLACEMENT | 5-15 | | 5.5.1 General | 5-15 | | 5.5.1.1 Scope | 5-15 | | 5.5.1.2 Lines and Grades | 5-15 | | 5.5.1.3 Foundation Preparation | 5-16 | | 5.5.1.4 Placement | 5-16 | | 5.5.1.5 Moisture Control | 5-17 | | 5.5.1.6 Compaction | 5-17 | | 5.5.1.7 Special Compaction Equipment | 5-18 | | 5.5.1.8 Sequence of Fill Operations | 5-18 | | 5.5.1.9 Contamination | 5-18 | | 5.5.1.10 Conduct of Work | 5-18 | | 5.5.1.11 Access Roads | | | 5.5.2 Liner Fill Material | 5-19 | | 5.5.2.1 HDPE Liner Foundation Preparation | | | 5.5.2.2 Anchor Trench Excavation & Backfill | 3-21 | | 5.5.3 Outside and Horizontal Structural Fine Grain Fill | | | 5.5.4 Rippability Test | 5-22 | | 5.5.5 Drain Rock | 5-22 | | 5.5.6 Geotextile Fabric | 5-22 | | 5.5.7 Protective Drainage Layer | 5-23 | | 5.6 LINER INSTALLATION | 5-24 | | 5.6.1 Introduction | 5-24 | | 5.6.1.1 General | 5-24 | | 5.6.1.2 Scope of Work | 5-24 | | 5.6.1.3 Definitions | 5-25 | | 5.6.1.4 Applicable Codes and Regulations | 5-25 | | 5.6.1.5 Limits of Work | 5-26 | | 5.6.2 Contractor's Responsibility | 5-26 | | 5.6.3 Inspection of Work | 5-26 | | 5.6.3.1 General | 5-26 | | 5.6.3.2 Access | 5-27 | | 5.6.3.3 Examination | 5-27 | | 5.6.3.4 Samples and Tests | | 5-27 | |---|--|-------------| | 5.6.3.5 Alteration to Drawings and Specifications | | | | 5.6.4 Synthetic Material | | | | 5.6.4.1 Scope | | | | 5.6.4.2 Synthetic Liners | | | | 5.6.4.2.1 Scope | | | | 5.6.4.2.2 General | | <i>5-28</i> | | 5.6.4.2.3 Submittals | | 5-29 | | 5.6.4.2.4 Delivery, Storage and Handling | | 5-33 | | 5.6.4.2.5 Geomembrane Conformance Testing | | 5-34 | | 5.6.4.2.6 Geomembrane Resin | | 5-35 | | 5.6.4.2.7 Geomembrane Rolls | | 5-35 | | 5.6.4.2.8 Extrudate Rod or Bead | | 5-36 | | 5.6.4.2.9 Execution | | 5-36 | | 5.6.4.2.10 Anchor Trenches | | 5-41 | | 5.6.4.2.11 HDPE Tie-In Connection | | | | 5.6.4.2.12 Field Quality Control | | | | 5.7 GEOGRIDS | | 5-47 | | 5.7.1 Physical Properties | | 5-47 | | 5.7.2 Handling and Placement | # 1 | 5-47 | | 5.7.3 Seams and Overlaps | | | | 5.7.4 Repair | | | | 5.7.5 Placement of Soil Materials | | | | | | | | 5.8 GEONETS | | | | 5.8.1 Physical Properties | | | | 5.8.2 Handling and Placement | | | | 5.8.3 Stacking and Joining | | | | 5.8.4 Repair | | 5-50 | | 5.8.5 Placement of Soil Materials | | 5-50 | | 5.9 TEST FILL PROGRAM | | 5-51 | | 5.9.1 PURPOSE AND SCOPE | | 5-51 | | 5.9.2 CONSTRUCTION EQUIPMENT | | 5-52 | | 5.9.3 TEST FILL MATERIAL | Albert State of the th | 5-52 | | 5.9.4 TEST FILL CONSTRUCTION | | | | 5.9.4.1 Sub-grade Preparation | | | | 5.9.4.2 Configuration | | | | 5.9.4.3 Fill Placement | | | | 5.9.4.3.1 First Lift | | | | 5.9.4.3.2 Second Lift | | 5-53 | | 5.9.4.3.3 Remaining Lifts | | | | 5.9.4.3.4 Final Surface Preparation | | | | 5.9.5 INSPECTION AND TESTING | | | | 5.9.5.1 Test Fill Material | | | | 5.9.5.2 Sub-grade Preparation | | | | 5.9.5.3 Test Fill Construction | ••••• | | 5-5 | |--|--|---|-------------| | 5.9.5.3.1 Lift Compaction | | | | | 5.9.5.3.2 Final Surface Preparation | | | | | 5.9.5.3.3 Permeability Testing | | | | | 5.9.5.4 Test Results | | | | | 5.9.5.5 Lines and Grades | | | <i>5-57</i> | | 5.9.6 DOCUMENTATION | | *************************************** | 5-57 | | 5.9.6.1 Test Fill Material | | | 5-57 | | 5.9.6.2 Test Fill Construction | | | 5-57 | | 5.9.6.2.1 Sub-grade Preparation | | ••••••• | 5-57 | | 5.9.6.2.2 Test Fill Construction | | | 5-57 | | 5.10 POLYETHYLENE PIPE AND FITTINGS | | *************************************** | 5-58 | | 5.10.1 Material Requirements | | ••••• | 5-58 | | 5.10.1.1 Pipe | | ••••• | 5-58 | | 5.10.1.2 Fittings | ••••• | | 5-59 | |
5.10.1.3 Joints | | | | | 5.10.2 Manufacturers Documentation | | | 5-59 | | 5.10.2.1 Certification of Property Values | | | | | 5.10.2.2 Quality Control Certificates | | ····· | 5-60 | | 5.10.3 Fusion Process for Joints | | *************************************** | 5-60 | | 5.10.3.1 Preparation | | | 5-60 | | 5.10.3.2 Weather Conditions for Butt Fusion | | | 5-60 | | 5.10.3.3 General Butt-Fusion Procedure | | ••••• | 5-61 | | 5.10.4 Pressure Testing of Pipe Joints | | •••••• | 5-62 | | 5.10.4.1 Segment Testing: Pre-Installation | | ••••• | 5-62 | | 5.10.4.2 Test Failure | | | 5-63 | | 5.10.4.4 Test Reporting | | | 5-63 | | 5.10.4.4 Test Reporting | | ************************************** | 5-64 | | 6. OPERATIONS PLAN | | | | | 6. UPERATIONS PLAN | ••••• | | 0-1 | | 6.1 LANDFILL DEVELOPMENT | | | 6-1 | | 6.2 BORROW AREA OPERATIONS | The Automotive Community of th | | 6-1 | | 6.3 WASTE ACCEPTANCE AND DISPOSAL REQUIREMENTS | • | •••••• | د ا | | | | | | | 6.4 SPREADING AND COMPACTING REQUIREMENTS | | | | | 6.5 HAZARDOUS AND LIQUID WASTES SCREENING PROGRAM | | | | | 6.6 COVER MATERIAL REQUIREMENTS AND VECTOR CONTROL | | | | | 6.7 EXPLOSIVE GAS CONTROL | | | 6-2 | | 6.8 RECORD KEEPING | | | | | 7. CLOSURE AND POST-CLOSURE CARE PLAN | | | | | 7. CLOSURE AND POST-CLOSURE CARE PLAN | •••••••••••••••••••••••••••••••••••••• | *************************************** | 7-1 | | 7.1 CLOSURE NARRATIVE | | | 7-1 | | 7.1.1 Cap System Specifications | | | | | • • • | | | | | 7.1.2 Barrier Layer | 7-1 | |---|------| | 7.1.3 Erosion Layer | 7-2 | | 7.1.4 Gas Venting System | | | 7.1.5 Construction Quality Control/Quality Assurance | 7-2 | | 7.1.6 Test Pad [Ref.: .1624(b)(8)(B)(I)] | 7-2 | | 7.1.7 Quality Control Tests [Ref.: .1624(b)(8)(C)(I)] | 7-3 | | 7.1.8 Quality Assurance Tests [Ref.: .1624(b)(8)(C)(ii)] | 7-3 | | 7.1.9 Testing Responsibility | 7-3 | | 7.1.10 Inspection Activities | | | 7.1.11 Sampling Strategies | 7-4 | | 7.1.12 Documentation. | | | 7.1.13 Construction Considerations | 7-4 | | 7.2 WASTE AREA AND VOLUME ESTIMATES | 7-4 | | 7.3 CLOSURE SCHEDULE | 7-5 | | 7.3.1 Contacts | 7-7 | | 7.3.2 Planned Use of Closed Landfill | | | 7.3.3 Post-Closure Care | 7-7 | | 7.4 CLOSURE AND POST-CLOSURE ASSUMPTIONS AND REQUIREMENTS | 7-12 | | 8. WATER QUALITY MONITORING PLAN | 8-1 | | 8.1 GROUNDWATER QUALITY MONITORING PLAN | 8-1 | | 8.2 SURFACE WATER QUALITY MONITORING PLAN | 8-1 | | 8.3 SEMIANNIJAI MONITOPING EVENTS | | #### **TABLE OF TABLES** | Table 3-1: Average Daily Leachate Flow Rate by Month | 3-7 | |--|------| | Table 5-1: Liner Fill Sieve Analysis Specifications | 5-20 | | Table 5-2: Required ASTM Test Methods for Liner Fill | 5-20 | | Table 5-3: Outside and Horizontal Structural Fine Grain Fill Sieve Analysis Specifications | 5-21 | | Table 5-4: Geotextile Fabric Properties Specifications | 5-23 | | Table 5-5: Required Properties of High Density Polyethylene (HDPE) | 5-31 | | Table 5-6: Geomembrane Resin Specifications | 5-35 | | Table 5-7: Required Seam Strengths for HDPE Geomembrane | 5-46 | | Table 7-1: Closure Schedule | 7-6 | | Table 7-2: Post-Closure Care Schedule | 7-12 | | | | | TABLE OF FIGURES | | | Figure 5-1: Suggested Test Fill Configuration | 5-65 | | Figure 5-2: Permeability, Density, and Moisture Condition Relationship | 5-66 | | Figure 5-3: Moisture/Density/Compactive Effort Relationship | | #### TABLE OF APPENDICES - A. DSA DESIGN GROUP, INC. OPERATIONS PLAN SECTION FROM TRANSITION PLAN, APRIL 1994 - B. CALCULATIONS OF LEACHATE PIPE BEARING CAPACITY AND FLEXIBLE MEMBRANE LINER SLOPE STABILITY, PROJECT DESIGN MANUAL, MARCH 1992 AND ADDENDA TO TRANSITION PLAN Figure 7-1: Post-Closure Care Inspection Report7-9 - C. HELP MODEL RESULTS ON ESTIMATING LEACHATE GENERATION - D. APPROVAL LETTER FOR AMENDMENTS TO SEDIMENT AND EROSION CONTROL PLAN, FEBRUARY 26, 1997 - E. DESIGN CALCULATIONS SPECIFIC TO WASTE CELL 4 to soil is 8:1. The volume of cap material required for this cell is approximately 4,800 cy of compacted clay liner material and 1,600 cy of vegetative cover. It should be noted that a portion of the estimated cap volume is part of the estimate previously calculated for the prior permitted phase. The estimated quantity of compacted soils required for the construction, operation, and closure of the landfill are as follows: #### Construction: Sub-base layer: 3,300 cy (compacted) Clay liner: 6,453 cy (compacted) Protective drainage cover: 3,227 cy (uncompacted) Gravel layer (57 stone): 2,111 cy (uncompacted) Operation (assuming 8:1 waste to soil ratio): Daily cover and Intermediate cover: 11,727 cy (compacted) Baled Waste: 93,820 cy (compacted) #### Closure: Clay liner: 4,840 cy (compacted) Erosion layer (vegetative cover): 1,613 cy (uncompacted) #### 3.3 CONTAINMENT AND ENVIRONMENTAL CONTROL SYSTEMS Dust control measures shall be provided as necessary to prevent creating a nuisance to adjacent landowners or to landfill employees. No oils or chemicals (other than water) are used as dust suppression. Minimum dust control will include a water truck for wetting of haul roads. Blowing litter shall be controlled by fencing and policing the area as required. Bailed waste does not promote extensive blowing debris. Odor control measures shall be provided as necessary to prevent any nuisance to adjacent landowners. Minimum odor control measures will include regular daily cleanup of the site and a ## 1. WASTE CELL 4 PERMIT APPLICATION OVERVIEW The Haywood County White Oak Sanitary Landfill (WOSLF) seeks a permit renewal to include the construction of the lateral expansion designated Waste Cell 4. This new phase would be constructed adjacent to the existing landfill overlapping portions of the existing waste cells 2 and 3. The construction of Waste Cell 4 would allow the WOSLF to extend operations for approximately 1.5 years. During this time, the Haywood County Board of Commissioners intends to pursue permitting on a new landfill phase for future expansion. This report includes all plans required under North Carolina Administrative Code (NCAC) 15A 13B .1600 as required for a permit modification request. These plans include: - 1. Facility Plan - 2. Engineering Plan - 3. Construction Quality Assurance Plan - 4. Operations Plan - 5. Closure and Post-Closure Care Plan - 6. Water Quality Monitoring Plan Since much of the design effort required to construct the previous phases of the WOSLF are applicable to this permit renewal, frequent reference will be made to the existing permit and plans. The references will ensure consistent landfill operations through the use of previously approved design practices and parameters. However, where required, information specific to Waste Cell 4 will be addressed in this report. # 5. CONSTRUCTION QUALITY ASSURANCE PLAN ### **5.1 INTRODUCTION** The Construction Quality Assurance Plan (CQAP) presented herein is for the construction of the lateral expansion of the White Oak Sanitary Landfill, Haywood County, North Carolina (WOSLF). The purpose of this CQAP is provide guidance to personnel on the required documentation activities during the construction of the lateral expansion. This guidance will meet the construction design and specification requirements of WOSLF and the North Carolina Department of Environment and Natural Resources (NCDENR). The overall goals of the CQAP are to ensure that proper construction techniques and procedures are used to verify that the materials and installation meet project specifications and the NCDENR permits. Additionally, the program will identify and define problems that may occur during construction and ensure that these problems are corrected before the construction is complete. At the completion of the work, the program will culminate in a certification report which documents that the soil, liner and leachate collection systems have all been constructed in substantial compliance with design standards and NCDENR requirements. The main emphasis of the CQAP is careful documentation during the preparation and placement of the soil, liner, and leachate collection systems. The Construction Quality Assurance Consultant shall be responsible for the testing herein described for the construction of the landfill expansion. The QA testing shall be done in addition to the contractor's own QC testing. #### 5.2 MANAGEMENT ORGANIZATION At the present time, the following persons hold these positions with respect to WOSLF lateral expansion project: ### 5.2.1 White Oak Sanitary Landfill #### 5.2.1.1 General Manager Name: C. Jack Horton Firm: Haywood County Manager 420 North Main Street Courthouse Annex # 5.2.5 Construction Quality Assurance Consulting Firm # 5.2.5.1 Certifying Engineer Name: **TBD** Firm: **TBD** # **CQA** Project Manager Name: **TBD** Firm: **TBD** ## 5.2.5.2 CQA Site Project Manager Name: **TBD** Firm: **TBD** # 5.2.5.3 CQA Senior Technician Name: **TBD** Firm: TBD # 5.2.6 Laboratory Testing # 5.2.6.1 Soil Laboratory Name: **TBD** Firm: TBD # 5.2.6.2 Geosynthetic Laboratory Name: **TBD** Firm: **TBD** ## 5.2.7 Surveying Name: **TBD** Firm: **TBD** ## 5.2.8 Project Work Plan ## 5.2.8.1 Pre-Construction Meetings The Pre-Construction meeting shall be attended by at least the following individuals or their personal representatives: General Contractor, CQA Lead Manager, Site Engineer, Project Manager, Subcontractors, and the Geosynthetic Installer. The following is a list of topics to be discussed at the Pre-Construction meeting: - Discuss any required modifications to the CQAP - b. Review special permits and state and/or federal regulations - c. Review responsibilities and roles of each party - d. Review lines of authority and communication - e. Review procedures for documentation and reporting information - f. Review distribution and storage of documents and reports - g. Establish protocol for
testing and geosynthetic sample management - h. Establish protocol for handling construction deficiencies - i. Establish protocol for repairs and re-testing - j. Conduct site walk through: - 1. Discuss work plans - 2. Inspect material handling and storage locations - 3. Review office facilities (copy machine, mailing, etc.) - k. Review detailed time schedule for all operations - 1. Review work area security, check-in procedures, and safety protocol - m. Discuss and establish procedures for material processing - n. Review site health and safety requirements - o. Meeting shall be documented by the CQA Site Project Manager or other authorized representative. ## 5.2.8.2 Roles and Responsibilities The following is a listing of roles and responsibilities for each party involved in the construction of the lateral expansion: - a. White Oak Sanitary Landfill Owner and Operator - b. Steffen, Robertson and Kirsten (NC), Inc. (SRK) Providing construction drawings and other related services - c. Surveyor Subcontractor to SRK or WOSLF. The surveyor shall provide documentation involving the compacted soil, geosynthetics, and leachate collection systems - d. Soils Lab To provide conformance and construction testing of the soil and geosynthetic materials - e. Earthwork Contractor Earthwork Contractor responsible for excavation and re-compaction of the material - f. Geosynthetic Installer Responsible for the supply and installation of the geosynthetic liner system. #### **5.2.9 Definitions** ## 5.2.9.1 Construction Quality Assurance A planned and systematic application of all means and actions designed to provide adequate confidence that items or services meet design and specifications requirements and will perform satisfactorily in service. In the context of the liner system, construction quality assurance refers to means and actions employed by the Project Manager, CQA Site Project Manager, and CQA Monitors to ensure conformity of the liner system installation with guidelines set forth in the CQAP, plans, specifications, and NCDENR permits. # 5.2.9.2 Construction Quality Control Those actions which provide a means to measure and regulate the characteristics of an item or services to design, specifications, and NCDENR requirements. In the context of the geosynthetic liner system installation, quality control refers to those actions taken by the Geosynthetic Installer to ensure that the product and the workmanship meet the requirements of the plans, specifications, site and NCDENR permits. # 5.2.9.3 Design Engineer An individual or firm responsible for the design, drawings, plans, and specifications of the landfill lateral expansion. ### 5.2.9.4 General Contractor or Contractor The firm responsible for the construction of soil components of the landfill design in conformance with plans, specifications, site, and NCDENR permits. ## 5.2.9.5 Construction Quality Assurance Consultant The firm responsible for observing, testing, and documenting activities related to construction quality assurance during the installation of the complete liner system, including earthworks and leachate collection systems. The CQA Site Project Manager is responsible for management of onsite CQA personnel and issuing a summary certification and documentation report bearing the seal of the Certifying Engineer registered in the State of North Carolina. # 5.2.9.6 CQA Project Manager This is the person that represents the CQA firm for the CQA Consultant. In this manual/plan the term "CQA Project manager" shall mean a duly authorized employee or representative of the CQA Consultant in charge of CQA activities. ## 5.2.9.7 CQA Site Project Manager The individual who is an employee of the CQA Consultant responsible for the on-site management of CQA Monitors, testing, observing, and documentation activities. This person is also responsible for the preparation of the documentation report and files. # 5.2.9.8 CQA Monitor(s) Individual(s) responsible for documenting, testing, and observation of on-site construction activities. The CQA Monitors are on-site employees of the CQA Consultant. #### 5.2.9.9 Owner The firm/entity that owns and/or operates the solid waste facility. For this project, the term "Owner" means WOSLF. ## 5.2.9.10 Project Manager The official representative of the Owner. In this CQAP, the term "Project Manager" shall mean a duly authorized employee or representative of the Owner and shall apply to or be interchangeable with the "Construction Coordinator." ## 5.3 DOCUMENTATION PROCEDURES ## 5.3.1 Standard Reporting Procedures The CQA Technicians shall issue a daily report of construction activities. These reports shall include, at a minimum, the following information: - a. An identifying sheet number for cross-referencing and documentation control - b. Date, project name, location, and other identification - c. Weather conditions - d. Problems encountered and resolutions - e. Descriptions and locations of ongoing construction - f. Equipment and personnel in each work area, including subcontractors - g. Descriptions and specific locations of areas, or units, or work being tested and/or observed and documented - h. Locations where samples were taken - i. A summary of test results, failures, and re-tests - j. Observations of the following operations for all geosynthetics: - 1. Material delivery and inventory - 2. Deployment operations - 3. Joining/seaming operations - 4. Conditions of panel before and after placement - 5. Visual inspection of walkovers ### 5.3.1.1 Applicable Forms The CQA Monitors may utilize the following form titles for the project: - a. Daily Field Report - b. Weekly Progress Report - c. Letter of Transmittal - d. Telephone Memorandum - e. Speed Letter - f. Request for Information - g. Speed Memo/Notice of Condition - h. Notification of Insufficient Information - i. Contract Change Notice - j. Meeting Minutes Format - k. Nuclear Density Testing - 1. Sand Cone Test Report - m. Drive Cylinder Test Report - n. Proctor Form - o. Soil Testing Tracking Log - p. Soil Sampling Test Request Record - q. Certificate of Acceptance of Soil Sub-grade - r. Geosynthetic Materials Inventory Checklist - s. Daily Field Report Geosynthetic Summary - t. Construction Site Safety Form - u. Construction Photo Log - v. Certificate of Completion If any of the above referenced titles are used, then an actual form shall be composed by the CQA agent on-site and copies given to the appropriate parties. ### 5.3.2 Problem/Deficiency Identification and Corrective Action The CQA Monitor is required to inform the General Contractor and/or the Geosynthetic Contractor, or their representatives, in a timely manner, of any difference between the interpretation of the plans and specifications by the contractors versus the CQA Monitor interpretation. In addition, any actual or suspect work deficiencies shall be brought to the Project Manager's attention. A special meeting shall be held when and if a problem or deficiency is present. At a minimum, the meeting shall be attended by the Geosynthetic Contractor, the General Contractor, the Project Manager, the CQA Site Manager, and the CQA Monitor. If the problem involves a possible design modification, the Design Engineer should be present. The purpose of the meeting is to define and resolve the problem or work deficiency as follows: a. Define and discuss the problem or deficiency; - b. Review alternative solutions: - c. Implement an action plan to resolve the problem of deficiency. The CQA Site Project Manager or his representative will document all proceedings. ## 5.3.3 Plan Modification Design and/or specification changes shall be made only with written approval of the WOSLF's Project Manager, the Design Engineer, and NCDENR. Adjustments in base grades must receive prior approval from NCDENR. The CQA Site Project Manager shall promptly document the information necessary whenever any approved changes are made in the field that deviate from the initial design or NCDENR permit and conditions. ## 5.3.4 Scope Change The CQA Site Project Manager shall document the information necessary whenever additional engineering services are requested by the site contractor or others that exceed the original scope of services. ## 5.3.5 Photographic Documentation Photographs shall be taken to document observations, problems, and/or deficiencies, or work in progress. Photographs will include identification of the date, location, direction of view, and time period. Photographs will be filed in chronological order in a permanent protective file by the CQA team. One set of prints & negatives shall be turned over to the Owner at the conclusion of the project. The following is a list of minimum photographs to be taken during construction: - a. Re-compacted soil construction - b. Geosynthetic material storage - c. Geomembrane deployment - d. Fusion welding devices - e. Extrusion welding devices - f. Air testing - g. Vacuum box testing - h. Seaming - i. Destructive sample location and removal - j. Trial welds - k. Tensiometer testing - 1. Geocomposite deployment - m. Protective/vegetative layer construction - n. Design modifications - o. Construction deficiencies - p. Completed construction ## **5.3.6 Final Construction Documentation Report** After the completion of construction, the CQA Site Project manager shall prepare a final documentation report covering the installation and testing of the complete lining system. This report shall certify that construction of the liner and sub-base system has been constructed in substantial accordance with the design plans, specifications and NCDENR permits. A copy of this report shall be issued to the Owner within two weeks following completion of the construction. ### 5.3.6.1 Draft Table of Contents As a minimum, the documentation report will contain the following items along with the narrative portion of the report. The proposed table of contents is: Narrative/Certification Certificates of Completion
Geotechnical Pre-qualification Soil Protective Material Construction Soil Data Permeability Tests Protective Data Test Location Maps Thickness Measurements Geosynthetic Pre-construction Data Manufacturers' Material QC Material Inventory Geosynthetic Liner Data Sub-grade Acceptance Installation Summary Pertinent Information Design Modifications Personnel Resumes Construction Photographs Record Drawings ## 5.3.6.2 Draft List of Drawings As a minimum, the documentation report will include the following proposed list of drawings. - a. Permeability and Thickness Test Locations - b. Top of Protective Layer - c. Geomembrane Panel Layout ## 5.3.7 Site Surveying Requirements The CQA Site Project Manager shall coordinate all survey activities with the surveyor. The surveyor will be required for re-compacted soil test locations, protective layer verification and geomembrane as-built survey. Geomembrane survey data shall include panel layout I.D.'s. #### 5.4 EXCAVATION #### 5.4.1 General ### 5.4.1.1 Scope of Work The excavations to be performed include, but are not limited to, site preparation: removal of topsoil and other unsuitable materials located within the proposed construction limits; shaping; and excavation or trenching for the surface water drains, pipeline channels, and in the project borrow area. The Contractor shall be solely responsible for determining the excavatability of soil and rock materials, water table conditions, and other pertinent subsurface information. ## 5.4.1.2 Handling of Material Insofar as is practicable in the permanent construction, the Contractor shall use materials obtained from designated borrow areas, as approved by the WOSLF Project Coordinator, which meet the applicable specifications. Such materials may be placed in the designated final locations direct from the excavation. The Contractor shall schedule excavation, placement, and compaction operations so as to avoid re-handling or stockpiling of excavated material. #### 5.4.1.3 Lines and Grades All open-cut excavations shall be performed in accordance with the specifications to the lines, grades, and dimensions shown on the drawings or as established by the Design Engineer. Assumed excavation lines for the work are shown on the Drawings, but the final excavation may vary from lines shown with approval from NCDENR. The assumed final lines for excavation, shown on the Drawings, shall not be strictly interpreted as accurately indicating the final or actual lines of excavation. When unfavorable conditions are discovered, they shall be corrected by excavation to lines, depths, and dimensions prescribed by the Design Engineer. Fills tying-in to existing fills shall be keyed into the existing slopes. This shall be accomplished by blending (with the corner bit of dozer) the outer slopes into the imported fill minimum of three (3) feet (horizontal). Each lift shall be keyed into the existing slope. # 5.4.1.4 Cuts and Slopes The Contractor shall inspect all temporary and permanent open-cut excavations on a regular basis for signs of instability. Should signs of instability be noted, the Contractor shall undertake remedial measured immediately and shall notify the WOSLF Project Coordinator as soon as possible. It shall be the Contractor's responsibility to remove all loose material from the excavation slopes and to maintain the slopes in a safe and stable condition at all times during the progress of the work. ## 5.4.1.5 Excess Excavation All necessary precautions shall be taken to preserve the material below and beyond the lines of excavation in the soundest possible condition. Where excess excavations has been performed to complete the Work, such areas shall be refilled with materials furnished and placed to the satisfaction of the CQA Monitor at the Contractor's expense. Over-Excavation required by the CQA Monitor, and subsequent backfilling, will be payable by the owner on the basis of the Contractors unit rates which will form a part of the Contract. ## 5.4.1.6 Disposal of Excavated Materials Excavated materials unsuitable for permanent construction requirements shall be wasted. Waste piles shall be located outside the limits of the fill areas as shown on the Drawings, or as approved by the WOSLF Project Coordinator, where they will not interfere with the natural flow of streams, with the operation of the Owners facilities and other facility structures, and where they will neither detract from the appearance of the completed project nor interfere with the accessibility of the various parts of the work. Waste piles shall be graded and trimmed to reasonably regular lines and stable slopes. ## 5.4.2 Site Preparation #### 5.4.2.1 General The Contractor shall clear, grub, and strip from the foundation areas of the additional cell, waste stockpile areas, borrow areas, and related structures, all material unsuitable for use as a foundation or acceptable fill material, as determined by the CQA Monitor. ### 5.4.2.2 Clearing Clearing shall be done in the entire area with in the facilities limits delineated on the Drawings. Clearing shall extend a maximum of 20 feet outside the facilities limits. Clearing shall consist of cutting brush to ground level, and removing such material along with wood, rubbish, and any other vegetation. The vegetative material, rubbish, and other materials removed during clearing and grubbing shall be removed from the cleared area and disposed of in an area designated by the WOSLF Project Manager. ### **5.4.2.3** Grubbing Grubbing shall consist of the removal of stumps, vegetation, and roots 1 inch diameter or larger from below the surface of the natural ground. ## 5.4.2.4 Stripping Stripping of the upper 12 inches (maximum) of the soil shall be done in the entire area within the stripping limits of the facilities foundations, and in approved areas of the borrow sources. Stripping shall not be done below 12 inches from the original ground surface, unless otherwise directed by the CQA Monitor. The stripped materials shall be removed from the stripped area and placed in designated stockpile areas. Placement of stripped soils outside of designated areas shall not be done unless otherwise directed by the WOSLF Project Manager. Unsuitable materials to be removed by stripping shall include debris, topsoil, excessively wet or soft soil, and vegetable matter, including roots. Other perishable and objectionable materials unsuitable for use in permanent construction, and which might interfere with the proper bonding of fill with the foundations or the proper compaction of the materials in embankments and other fill areas, or which are other wise unsuitable as determined by the CQA Monitor, shall be removed. Specific locations are identified on the Drawing for relocation of the topsoil existing within the foundation area of new cell. ## 5.4.2.5 Disposal of Material Slash, tree debris, shrubs and other vegetation from clearing and grubbing may, following the request of the Contractor and approval of the WOSLF Project Coordinator, be collected at designated locations and disposed of by controlled burning. Topsoil shall be stockpiled for later used in areas designated by the WOSLF Project Coordinator. Other material obtained from the grubbing and stripping operations shall be disposed in areas designated by the WOSLF Project Coordinator. ### 5.4.3 Access Roads Contractor's access roads shall be planned such that construction of said roads shall coincide, as much as practicable, with the construction of the permanent roads associated with the project and other required excavation. Prior to construction of access roads, the Contractor shall submit a plan showing their location and size for the WOSLF Project Coordinator to submit for the Owner's and Design Engineer's approval. #### 5.4.4 Borrow Areas To the extent practicable, earth and rock materials required for the work defined by these Specifications shall be obtained primarily from the borrow areas designated on the Drawings. Materials not available from said borrow areas shall be furnished by the Contractor from a source proposed by the Contractor and approved by the Design Engineer. The Owner will select and used borrow areas which adhere to the overall mine plan for construction materials., provided the materials meet the specification requirements for the intended use, and are approved by the Design Engineer. ### 5.5 FILL PLACEMENT #### 5.5.1 General ## 5.5.1.1 Scope The work covered by this section of the Specifications shall include, but is not limited to, fill placement for the new cell and access roads, reworking in-place foundation materials in the foundation areas, and earthwork incident thereto. The embankment and other pertinent structures shall have materials categorized as follows: - FML (synthetic HDPE liner) - liner fill - protective soil layer - inert fine grain fill (structural subgrade); - filter fabric; and - drain material. #### 5.5.1.2 Lines and Grades Earthwork shall be constructed to the lines, grades, and cross sections shown on the Drawings, or as specified herein. # 5.5.1.3 Foundation Preparation Upon the completion of the required foundation stripping/excavation operations and removal of unsuitable foundation material, the excavated surface which is to be constructed upon shall be compacted and proofrolled in its entirety to examine the foundation for soft, unacceptable foundation conditions. The foundation shall be proofrolled using a loaded Cat 631 scraper or equivalent. No new fill shall be place in the foundation areas until the foundation has been inspected and approved by the CQA Monitor. #### 5.5.1.4 Placement The procedures for the construction of required fills shall be described to and approved by the CQA Monitor prior to fill placement. No brush, roots, sod, or other deleterious or unsuitable materials shall be placed in the engineered fills. The suitability of all fill materials intended for use in the construction work shall be subject to
approval by the CQA Monitor. Fill placement shall be temporarily stopped, due to unsuitable weather conditions, at the discretion of the CQA Monitor. Under marginal weather conditions, the Contractor may place fill provided the fill, when tested, meets Specifications. The distribution of materials shall be such that the fill is free from lenses, pockets, streaks, or layers of material differing substantially in texture or gradation from the surrounding material. The combined borrow excavation and fill placement operation shall be such that the materials, when compacted in the fill, shall be blended sufficiently to ensure the best practicable distribution of the material, subject to the approval of the CQA Monitor. Fill shall be placed in approximately horizontal lifts of the maximum thickness specified for that material type, and leveled as needed in preparation for compaction. If, in the opinion of the CQA Monitor, the surface of the prepared foundation or the surface of any layer of the fill is too dry or too smooth to bond properly with the layer of material to be placed thereon, it shall be moistened and/or worked with harrow, scarifier, or other equipment to provide a satisfactory bonding surface before the next layer of fill material is placed. If, in the opinion of the CQA Monitor, the surface of the prepared foundation or the rolled surfaced of any layer of the fill in place is too wet for proper compaction of the layer of fill material to be placed thereon, it shall be removed and allowed to dry or shall be worked with harrow, scarifier, or other equipment to reduce the moisture content to the required amount, and then compacted before the next layer of fill material is placed. The placement of liner fill material in the Waste Cell 4 shall be to the lines and dimensions shown in the Drawings. Lift thickness, moisture conditions and compaction shall comply with the Specifications. ### 5.5.1.5 Moisture Control During compaction operations, the liner fill materials shall be maintained or conditioned within the moisture content range required to permit proper compaction to the specified density. The moisture contend of the fill material prior to and during compaction shall be uniform throughout the material. When materials is too dry for proper compaction, the Contractor shall spray water on the fill and work the moisture into the fill by harrowing, or other approved means, until a uniform distributions of moisture is obtained. Material that is too wet for proper compaction shall be removed from the fill or the material may be spread and permitted to dry, assisted by disking and harrowing, it necessary, until the moisture content is reduced to an amount suitable for obtaining the specified degree of compaction. ## 5.5.1.6 Compaction Wherever necessary, after material has been placed and spread, or reworked in-place and moisture conditioned as specified, the layer shall be compacted by passing compaction equipment over the entire surface of the layer a sufficient number of times to obtain the required density, as determined by the CQA Monitor on the basis of field density tests and his observations of the fill operations. The frequency of field density test performed on each type of material shall be as required by the CQA Monitor. The CQA Monitor will continuously evaluate the Contractor's equipment and methods. If such equipment or methods are found unsatisfactory for the intended use, the Contractor shall be required to replace the unsatisfactory equipment with other types or adjust methods until proper compaction is achieved. Compaction shall be based on ASTM D698 or compactive effort as approved by the CQA Monitor. In-place fill densities may be determined by the Sand Cone or Nuclear Gauge Methods. The Contractor shall construct test fills, as determined by the CQA Monitor, for fills outside the testing limits of ASTM D698, for establishing compactive effort procedures. The USBR Rapid Method may be used in conjunction with the Standard Proctor Compaction Method to determine percent compaction. # 5.5.1.7 Special Compaction Equipment Only hand-guided mechanical tampers or hand-guided vibratory rollers shall be used for compaction around, over, near, or adjacent to pipes, HDPE liner, and/or concrete structures. ## 5.5.1.8 Sequence of Fill Operations The contractor shall construct the fill areas such that the fill is approximately level at all times during construction. The fill surfaces shall be graded to prevent ponding of rainwater. The Contractor shall leave the surface of compacted fill, at the end of each shift or day, in such a manner as to prevent an excessive increase in moisture content arising from precipitation. The CQA Monitor may require that the top layer be removed at the re-commencement of fill placement if it has become too wet or is softened as a result of precipitation. In areas of HDPE liner placement, following such placement, no vehicular traffic and minimal installation labor traffic shall be permitted on the liner surface. Special access across installed liner, if required, shall be approved by the CQA Monitor and may require fill placement at the Contractor's expense to protect the liner. #### 5.5.1.9 Contamination The Contractor shall route equipment and take all actions necessary to prevent material of one type from being deposited inadvertently, either by dumping or through travel of equipment, in or on material of another type. Such improperly deposited material shall be removed from the fill areas as required by the CQA Monitor. Said removed material shall be wasted in locations designated by the WOSLF Project Coordinator. ### 5.5.1.10 Conduct of Work The Contractor shall maintain and protect fills in a condition satisfactory to the CQA Monitor at all times until the final completion and acceptance of the work. Any approved fill material which becomes unsuitable for any reason whatsoever, after being placed in the fill and before final acceptance of the work, shall be removed and replaced by the Contractor in a manner satisfactory to the CQA Monitor. ### 5.5.1.11 Access Roads Permanent access roads shall be constructed as approved by the Owner. Foundation preparation and fill placement for access roads within required fill areas shall be as specified for the fill areas. Fill placement for access roads outside of the required fill areas shall be as approved by the owner. Temporary access roads may be required by the Contractor to complete the specified work. The Contractor shall submit a plan showing the location and size of temporary access road fills for the WOSLF Project Coordinator to submit to the Owner for approval. #### 5.5.2 Liner Fill Material Liner fills shall consist of liner fine grain material and shall be used in the construction of the leachate pipeline channels, as shown on the Drawings. Liner fill material shall consist of inorganic clays and silts, or clayey and silty sands with a maximum particle size of ¾ inch. It is intended that Type I material shall be entirely obtained from required borrow area excavations, as indicated on the drawings. The liner fill material shall be moisture conditioned to near optimum moisture content (within plus or minus 2 percent of optimum), placed in 8 inch maximum loose lifts and compacted to a minimum of 95 percent of maximum density as per ASTM D698. Liner fill material shall be placed in horizontal lifts wide enough to accommodate placement and compaction with conventional construction equipment to meet Specifications. Liner fill material, within a zone of 5 feet adjacent to structures or HDPE liner, shall be compacted to a minimum of 95 percent of maximum density using special compaction equipment, unless otherwise approved by the CQA Monitor. Liner fills shall have a maximum permeability of 1.0×10^{-7} cm/sec and conform to the following material specifications listed in Table 5-1. Table 5-1: Liner Fill Sieve Analysis Specifications | U.S. Standard Sieve or Screen Opening | Percentage Passing by Weight | | | |---------------------------------------|------------------------------|--|--| | ¾ inch | 100 | | | | No. 4 | 85-100 | | | | No. 40 | 65-100 | | | | No 200 | 55-100 | | | Liner fill shall be tested per the ASTM designation and at the frequencies shown in Table 5-2. All auger probe holes shall be filled with tamped bentonite subsequent to depth verification tests. Table 5-2: Required ASTM Test Methods for Liner Fill | Parameter | Test Method | Min. Test Frequency | |--|----------------------|---| | Density | ASTM- D2922 | 1 test every 2000 cy | | Moisture Content | ASTM-D2216 | 1 test every 2000 cy | | Undisturbed Permeability | ASTM-D2434 | 1 test per acre per lift | | Lab permeability (From Borrow Source) | ASTM-D2434 | 1 test every 10,000 cy or every material change | | Particle Size Analysis | ASTM D-422 | 1 test every 10,000 cy or every material change | | Atterberg Limits | ASTM D4318 | 1 test every 10,000 cy or every material change | | Final Compacted Liner
Thickness | Total station survey | 50-foot grid | | Final Compacted Liner
Thickness (Side Slopes) | Probe by hand auger | 50-foot grid | # 5.5.2.1 HDPE Liner Foundation Preparation This work shall consist of shaping, leveling, moisture conditioning, and smooth drum compacting the surfaces over which HDPE liner will be installed. All roots, rocks, and sharp objects which could damage or protrude through the HDPE liner shall be removed by either mechanical means or hand picking. This work shall be scheduled in conjunction with the liner contractor's operation and performed just prior to the deployment of the layer of HDPE liner. The finished surfaced shall be uniformly smooth - free of dips, divots, and irregular surfaces. ### 5.5.2.2 Anchor Trench Excavation & Backfill This work shall consist of excavation the anchor trench, prior to the HDPE liner
installation, and backfilling the anchor trench once the HDPE liner has been installed in the trench. The anchor trench shall be excavated to the lines and grades depicted on the Drawings. Anchor trench excavation shall be scheduled in conjunction with the liner contractor's schedule of deployment. The excavated material shall be placed in the anchor trench in two equal lifts and pneumatically compacted, using heavy equipment, to a 90% standard Proctor density with a moisture content near optimum. It shall be the contractor's responsibility to ensure the equipment selected for the backfill and compaction operations does not damage the HDPE liner. In the event the equipment does damage the liner, it shall be the Contractor's responsibility to repair such damage. The final surface shall be graded to the specified finish grade. ## 5.5.3 Outside and Horizontal Structural Fine Grain Fill Outside and horizontal structural fine grain fill shall be placed in areas where fill is required to construct haul roads and maintain the integrity of the new cell. Fill material shall consist of inorganic sandy gravelly silts and clays with minimum of 50% passing the No. 200 standard sieve with a maximum particle size of two (2) inches. Oversized particles shall be demonstrated to be friable and break down under normal compaction. The fine grain fill shall conform to the following material specifications: Table 5-3: Outside and Horizontal Structural Fine Grain Fill Sieve Analysis Specifications | U.S. Standard Sieve | Percentage Passing | | |---------------------|--------------------|--| | or Screen Opening | by Weight | | | 2 inch | 100 | | | No. 4 | 85-100 | | | No. 40 | 65-100 | | | No 200 | 55-100 | | The structural fill shall be placed in 8 inch loose lifts, moisture conditioned to within 2 percent of the optimum moisture content, and compacted to a minimum of 95 percent of the maximum dry density, in accordance with ASTM D698. The fill shall be compacted with sufficient passes of a sheepsfoot roller or pneumatic roller to produce the required degree of compaction. The fill shall be graded horizontally following placement to provide positive drainage to adjacent drainage structures, and away from the new cell. ## 5.5.4 Rippability Test The contractor shall rip the production areas using a D-9N Cat Dozer, equipped with Grousers with less than 75% wear and a single medium duty ripper tip, or equivalent, until material hardness is such that ripping becomes ineffective. Rippability shall be determined by one or several of the ripping production methods listed in the Caterpillar Performance Hand Book. WOSLF Project Coordinator, the Contractor, and the Design Engineer shall observe the test and use the resulting data to determine the effectiveness of the ripping. #### 5.5.5 Drain Rock The drainage layer shall consist of smooth, well rounded, washed river gravel that meets the gradation requirements for No. 57 stone. The drain rock shall be installed in manner that minimizes damage to the collection pipe and geomembrane liner, and shall be placed as shown in the Drawings. ## 5.5.6 Geotextile Fabric The filter fabric shall be used in the construction of the leachate drainage system as shown in the drawings. The geotextile fabric shall be a Trevira Type 1120, as manufactured by Hoechst Celanese Corporation, or an approved equal. The geotextile shall have the following minimum physical properties listed in Table 5-4 on page 5-23. **Table 5-4: Geotextile Fabric Properties Specifications** | Fabric Property | Unit | Test Method | Value | |---------------------------|--------|--------------------|---------| | Fabric Weight | oz/sy | ASTM D-3776 | 6.0 | | Thickness, t | mils | ASTM D-1777 | 95 | | Grab Strength | lbs | ASTM D-4632 | 230/180 | | Grab Elongation | % | ASTM D-4632 | 65/75 | | Trapezoid Tear Strength | lbs | ASTM D-4533 | 80/75 | | Puncture Resistance | lbs | ASTM D-3787 | 100 | | (5/16' hemispherical tip) | | | | | Mullen Burst Strength | psi | ASTM D-3786 | 345 | | Water Flow Rate | gpm/sf | ASTM D-4491 | 180 | | Permeability | cm/sec | ASTM D-4491 | .059 | | AOS (Mod to 10 min) | sieve | ASTM D-4751 | 70-100 | | | size | | | | Roll Widths, Minimum | ft | | 15 | | Roll Length, Minimum | ft | | 300 | Filter fabric shall be unrolled and loosely laid upon prepared surfaces, as shown on the Drawings, or on any other surfaces designated by the CQA Monitor. The fabric shall not be stretched. Ample material shall be left available so that it can readily conform to irregularities in the receiving surface. Filter fabric placement shall be inspected and approved by the CQA Monitor before being covered with fill. Any rips, tears, or unsuitable materials, as determined by the CQA Monitor, shall be mended by the Contractor in a manner acceptable to the Engineer, or shall be replaced by the Contractor. ### 5.5.7 Protective Drainage Layer A gravelly silty sand or sandy silt shall be used as the protective drainage layer. One foot of material shall be placed directly above the leachate collection and drainage layer, and two feet shall be placed on top of the HDPE liner and filter fabric on the side slopes of the cell. The protective drainage material shall have a minimum permeability of 1 x 10⁻⁴ cm/sec so that leachate may percolate to the leachate collection system. The protective drainage material shall be placed as indicated on the Drawings and shall be inspected by the Quality Control Engineer. Tests required for the protective layer are as follows: | REQUIRED TEST | MINIMUM FREQUENCY | ACCEPTANCE CRITERIA | |--------------------|------------------------------|---------------------------------| | Visual Observation | Stockpile: as required | Material shall be substantially | | free | | · · | | | Placed Material: as required | of organics, other deleterious | | | | materials, or foreign materials | | Sieve Analysis | Stockpile: 1 per 1,000 cy | < 20% passing No. 200 sieve | | Permeability | Stockpile: 1 per 5,000 cy | $\geq 1 \times 10^{-4}$ cm/sec | | Carbonate Content | Stockpile: 1 per 5,000 cy | < 15% by weight | ### 5.6 LINER INSTALLATION ### 5.6.1 Introduction #### 5.6.1.1 General The Specifications presented in the following paragraphs are Technical Specifications for the installation of a liner system for Waste Cell 4 at the WOSLF. ## 5.6.1.2 Scope of Work The scope of work for these Technical Specifications shall include the installation of a single synthetic liner system for Waste Cell 4 Expansion located at the WOSLF in Haywood, North Carolina. Specific work items include, but are not limited to the following: - · Mobilization of all equipment and material required for the work; - · Placement of synthetic materials for liner on prepared surfaces; - · Furnishing and installing all material and constructing all items appurtenant and incidental to the above; - · Testing of completed facilities; and - · Demobilizing, which includes removal of temporary structures. The contractor shall familiarize himself with the relevant regional and site specific conditions which may have an impact upon the work. Drawings to be read in conjunction with these Specifications are included with this document, and are in a series numbered Sheet 1 through Sheet 12. In the case of discrepancy or ambiguity in the Specifications, Drawings, codes, standards, or regulations, it is the intent of these Specifications that the most restrictive interpretation shall apply unless interpreted otherwise by the Engineer. #### 5.6.1.3 Definitions The following definitions apply to these Specifications: - a. "Owner" is defined as an authorized representative of The White Oak Sanitary Landfill (WOSLF); - b. "Construction Manager" is defined as an authorized representative of the Owner responsible for coordinating the activities of the Contractor; - c. "CQA Monitor" is defined as a qualified representative appointed and authorized by the Owner to monitor the quality of the completed construction product; - d. "Design Engineer" is defined as an authorized representative of the owner, currently holding valid professional registration in North Carolina, who has designed the facilities to be constructed and prepared the plans and specifications; - e. "Contractor:" is defined as the party or parties which have a contract agreement with the Owner and perform the actual construction activities. - f. "Specifications" is defined as this document of technical specifications prepared by Steffen Robertson and Kirsten (N.C.), Inc. for the White Oak Sanitary Landfill, dated August, 1998. - g. "Drawings" is defined as the drawings in conjunction with these Specifications and are in a series numbered Sheet 1 through Sheet 12. ## 5.6.1.4 Applicable Codes and Regulations The work shall conform to applicable Federal, State, County, and local regulations. Test procedures shall conform to applicable ASTM standards, as documented in the edition of the standards in force at the start of work. Liner material and installation shall, where not specifically covered in these Specifications, be to a minimum of that specified in National Sanitation Foundation Publication No. 54 (NSF54). #### 5.6.1.5 Limits of Work The Contractor shall confine his apparatus, the storage of materials, and the operation of workmen to limits indicated by law, ordinances, permits or selected by the Construction Manager, and shall not unreasonably encumber the premises with his materials. Extreme caution shall be exercised at all times to avoid blocking plant or other roads or in any other way interfering with the Owner's operations or presenting a hazard to the Owner's personnel and equipment, or to the public. ## 5.6.2 Contractor's Responsibility The contractor shall carefully examine all of the Technical Specifications and Drawings, and the site of the work. He shall fully inform himself as to the character of all conditions at the site, local and otherwise, affecting the execution of the work,
including those conditions to which Federal, State, and local safety and/or health laws and regulations may be applicable. Failure to comply with the requirements of this section shall not relieve the contractor of responsibility for complete performance of the work. It shall be the sole responsibility of the contractor to familiarize himself, by such means as he considers appropriate, with all matters pertaining to this work including, but not limited to: - The location and nature of work; - Climatic conditions; - The nature and conditions of the terrain; - · Transportation and communication facilities; - Other construction or waste placement activities at the Project site that may be underway simultaneously with the construction work for the WOSLF expansion; and - · All other factors that may affect the cost, duration, and execution of the work. Before accepting the work, the contractor shall acknowledge in writing that he has inspected the site and determined the characteristics of the work and the conditions indicated above. ## 5.6.3 Inspection of Work ### 5.6.3.1 General Unless otherwise specified, full-time inspection of all construction activities defined by the Specification will be provided by the owner. Owner's inspection of all work shall be performed under the supervision and control of the CQA Monitor or his designated representative while such work is in progress. Said inspections are for the convenience, satisfaction, and benefit of the owner in determining that the work is performed in accordance with the Specifications. It shall be the Contractor's sole responsibility to provide all required materials (both natural and manufactured) and to perform all work in conformance with the Specifications. The CQA Monitor will inspect, test, and report all findings to the Construction Manager. The Construction manager shall be responsible for enforcing the Specifications or initiating variances or design changes through the Design Engineer. Owner's inspections shall not relieve the Contractor of responsibility for the acceptability of the finished work or portions thereof. #### 5.6.3.2 Access The CQA Monitor and his representatives shall at all times have access to the work whenever it is in preparation or progress provided that they report their presence to the Construction Manager who is responsible for all activities onsite. The Contractor shall fully cooperate with the CQA Monitor, shall provide proper facilities for access, and shall furnish labor and equipment reasonably needed for safe and convenient inspection, including the excavation of test pits. The Contractor shall give the CQA Monitor ample notice of readiness of the work for inspection, and the CQA Monitor shall perform said inspection in such a manner as not to unnecessarily delay the work. #### 5.6.3.3 Examination If any work should be covered up without prior approval or consent of the CQA Monitor, it must, if required by the Engineer, be uncovered for examination. #### 5.6.3.4 Samples and Tests It is the intent of these Specifications that materials shall be inspected and tested by the CQA Monitor before final acceptance of the work. Any item of the work which is found not to meet or exceed the Specifications or which is improperly located or constructed shall be removed and replaced. The CQA Monitor's inspections and tests shall not relieve the Contractor from full responsibility to furnish and install materials in conformance with these Specifications. ### 5.6.3.5 Alteration to Drawings and Specifications All alterations made to either the Specifications or Drawings shall be subject to the Design Engineer's approval and, where applicable, to the approval of regulatory government agencies. All alterations shall be issued under a covering work order signed by the Design Engineer. # 5.6.4 Synthetic Material ## 5.6.4.1 Scope The Contractor shall furnish and install synthetic materials including high density polyethylene (HDPE), and miscellaneous materials incident thereto in accordance with the manufacturer's recommendations. Alignments, lengths, and areas are shown on or derived from the Drawings. Exact locations and lengths may be varied to suit conditions encountered in the field, as approved by the CQA Monitor. Synthetic materials to be installed for the WOSLF expansion shall consist primarily of 60-mil HDPE. Synthetic materials to be installed shall be extrusion welded to the existing liner system where tie-in is required. ## 5.6.4.2 Synthetic Liners ## 5.6.4.2.1 Scope The Contractor shall furnish and install synthetic liners and miscellaneous materials incident thereto as specified herein and in accordance with the manufacturer's recommendations. Installation includes excavation and backfilling of synthetic liner anchor trenches, as shown on the Drawings. Exact locations and lengths may be varied to suit conditions encountered in the field, as approved by the CQA Monitor. #### 5.6.4.2.2 General The Contractor shall comply with the manufacturer's specifications concerning all aspects of shipping, storage, installation, seaming, and sealing of the liners. The liners shall be shipped to the site in rolls of the synthetic liner. Storage and handling, quality control, and quality assurance procedures shall be followed throughout the installation of HDPE membrane. It is the Contractor's responsibility to install the liner without punctures, rips or faulty field seams. All rips, punctures, and faulty field seams shall be repaired to the satisfaction of the CQA Monitor. Approval of the liner foundation by the CQA Monitor does not relieve the liner contractor of the responsibility to repair damage to the liner. The Contractor should satisfy himself that the liner foundation is adequate to receive the liner before commencing liner installation. The Contractor shall protect installed synthetic liners in a condition satisfactory to the CQA Monitor at all times until the final completion and acceptance of the work. Any approved installed liners which become damaged or unsuitable for any reason whatsoever before final acceptance of the work, The Contractor shall provide certification that the geomembrane and extrudate produced for this project have the same properties represented in the material Specification sheets in addition to meeting NSF-54 requirements. A copy of the quality control/quality assurance (QC/QA) program for geomembrane production shall also be provided. Before acceptance of installation by the Owner, the Contractor shall furnish reproducible record as-built drawings showing, at the minimum, panel numbers, seam numbers, seaming equipment and operator identification, temperatures and speed settings of equipment, seam date and location of patches and destructive seam samples. The liner material and workmanship shall be guaranteed according to the warranty in Section 5.4.2.3.1 of these Specifications. All submittals shall be subject to approval by the Owner. shall be removed and replaced or repaired by the Contractor at his own expense in a manner satisfactory to the CQA Monitor. #### 5.6.4.2.3 Submittals The Contractor shall furnish complete written instructions for storage, handling, installation and seaming of liner, in compliance with this Specification and conditions of warranty prior to construction. The Contractor shall also furnish drawings showing panel layouts and prepare and submit a time schedule for liner construction, including complete testing for acceptance prior to construction. The following shall be furnished for resin used in the manufacture of proposed geomembranes: - Statement of production date or dates; - · Certification that the resin meets the Specifications; - · Certification that all resin is from the same supplier; - · Copy of the quality control certificates issued by supplier; - · Test reports from the supplier; and - A statement that no reclaimed polymer was added. The Contractor shall provide a copy of the quality control certificate for production of geomembrane as well as the resin manufactured for this project seven days prior to receipt at site. The quality control certificate for the geomembrane shall include the following: - · Statement of the production date or dates; - Laboratory certification that the 60-mil HDPE meets the Specifications outlined in Section 4.2.3.1; - · Certification that all HDPE rolls are from the same HDPE supplier; - · A copy of quality control certificates issued by supplier; - · Test reports from the supplier; and - · A statement that no reclaimed polymer was added. Table 5-5: Required Properties of High Density Polyethylene (HDPE) | REQUIRED PROPERTIES OF HIGH DENSITY POLYETHYLENE (HDPE) | | | | | | |---|---------------------------------|-----------------|---------------|-----------------|----------| | Property | Test
Designation | Property Values | | Property Values | y Values | | | | 60 mil | 80 mil | | | | Thickness, mils
Minimum Average | ASTM D751
(modified NSF 54) | 60 | 80 | | | | Thickness, mils Lowest Individual Specimen | ASTM D751
(modified NSF 54) | 54 | 72 | | | | Density, g/cm ³
Minimum | ASTM D792
or
ASTM D1505 | 0.940 | 0.940 | | | | Melt Index, g/10 minutes
Maximum | ASTM D1238
(190°C, 2.16kg) | 0.4 | 0.4 | | | | Carbon Black Content, % Allowable Range | ASTM D1603 | 2.0 to 3.0 | 2.0 to 3.0 | | | | Carbon Black Dispersion Acceptable Levels | ASTM D3015
(modified NSF 54) | A1 or A2 | A1 or A2 | | | | Tensile Properties (each direction) Minimum | ASTM D638
(modified NSF 54) | | | | | | Tensile Strength at Yield, lb/in width (lb/in²) | | 126
(2100) | 168
(2100) | | | | 2. Tensile Strength at Break, lb/in width (lb/in ²) | | 228
(3800) | 304
(3800) | | | | 3. Elongation at Yield, % | | 12 | 12 | | | #### REQUIRED PROPERTIES OF HIGH DENSITY POLYETHYLENE (HDPE) Test **Property Values Property** Designation 60 mil 80 mil Elongation at Break, % 560
560 Tear Resistance, lbs **ASTM D1004** 39 52 (lbs/in thickness) Minimum (650)(650)Puncture Resistance, lbs FTMS 101 72 96 (lbs/in thickness) Minimum (1200)(1200)Method 2065 -60 -60 Low Temperature Impact, °C ASTM D746 Max. allowable failure temp. Dimensional Stability, % **ASTM D1204** ± 2.0 ± 2.0 Maximum allowable 1 hr @ 100°C Volatile Loss, % 0.4 0.4 **ASTM D1203** Maximum Resistance to Soil Burial, % **ASTM D3083** Maximum change in original Type IV ± 10 +10value Specimen at 2 inches/minute **Environmental Stress Crack ASTM D1693** 1500 Minimum hours with no (modified NSF 54) 1500 failures Water Absorption, % ASTM D570 Max. change in original weight 0.1 0.1 Coefficient of Linear Thermal 1.2 1.2 ASTM D696 Expansion (cm/cm °c) x 10⁻⁴ | REQUIRED PROPERTIES OF HIGH DENSITY POLYETHYLENE (HDPE) | | | | | |--|---|---------|-----------------|--| | Property | Test Designation 60 r | Propert | Property Values | | | | | 60 mil | 80 mil | | | Moisture Vapor Transmission
Rate (g/100 in ² day) | ASTM E96
100° F, 100%
relative humidity | 0.025 | 0.020 | | | Oxidation Induction Time of Polyolefins, minutes Minimum | ASTM D3895 | 100 | 100 | | | Multiaxial Elongation at Break,
% Minimum | ASTM D35 | 10 | 10 | | | Larger Diameter Direct Shear Interface/Friction Angle Determination, degrees | ASTM D3080 | 13 | 13 | | As represented by the National Sanitation Foundation's (NSF's) Standard No. 54, Federal Test Method Standards (FTMS) and the American Society for Testing and Materials (ASTM) ## 5.6.4.2.4 Delivery, Storage and Handling The geomembrane rolls shall be packaged and shipped by appropriate means so that no damage is caused and shall be delivered to the site only after the Owner receives and approves the required submittals. The Contractor is responsible for the transportation, off-loading and storage of the geomembrane rolls. Off-loading shall be done in the presence of the CQA Monitor and any damage during the off-loading shall be documented by the CQA Monitor and Contractor. Damaged rolls shall be separated from undamaged rolls until proper disposition of material is determined by the CQA Monitor. Final authority on the determination of damage will be the CQA Monitor. The Contractor shall replace damaged or unacceptable material at no cost to the Owner. Geomembrane rolls shall be stored on a prepared surface (not on wooden pallets) and shall be protected from puncture, dirt, grease, water, mechanical abrasions, excessive heat or other damage. The geomembrane will be stacked no more than three rolls high. The Owner will allocate sufficient space to store the geomembrane rolls. Any damaged rolls shall be rejected and removed from the site or stored at a location, separate from accepted rolls, designated by the Owner. All rolls which do not have proper manufacturer's documentation shall be stored at a separate location until all documentation has been received and approved. The Contractor is responsible for on-site handling of the geomembrane and shall use appropriate handling equipment to load, move or deploy geomembrane rolls. Appropriate handling equipment includes cloth chokers and spreader bars for loading, and spreader and roll bars for deployment. The geomembrane material shall not be folded or dragged and any damage to the geomembrane shall be documented by the CQA Monitor and Contractor. Damaged geomembrane shall either be repaired to the satisfaction of the CQA Monitor or removed and replaced with acceptable geomembrane material if the damage cannot be satisfactorily repaired. Repair, removal and replacement of damaged geomembrane shall be at the Contractor's expense if the damage was caused by the Contractor. ## 5.6.4.2.5 Geomembrane Conformance Testing #### 5.6.4.2.5.1 Tests After delivery, the Contractor shall assist the CQA Monitor in obtaining one geosynthetic sample per 100,000 square feet. The sample shall be forwarded to the Third Party Laboratory for the following tests: - Density (ASTM D792 or ASTM D1505); - Carbon black content (ASTM D1603); - · Thickness (ASTM D751 modified NSF 54); - Tensile characteristics (ASTM D638 modified NSF 54); - · Puncture resistance (FTMS 101 Method 2065); and - · Carbon black dispersion (ASTM D3015 modified NSF 54). # 5.6.4.2.5.2 Sampling Procedure Samples shall be taken across the entire roll width and shall not include the first three feet. Unless otherwise specified, samples shall be three feet long by the roll width. The CQA Monitor shall mark the machine direction and the manufacturer's roll identification number on the sample. ### 5.6.4.2.6 Geomembrane Resin The geomembrane resin shall be new, first quality high density polyethylene resin (HDPE) produced in North America and shall be compounded and manufactured specifically for the purpose of producing flexible membrane. There shall be no intermixing with other resin types, blending of recycles or seconds, or reclaimed polymer added to the geomembrane resin. The geomembrane resin shall meet the following Specifications as listed in Table 5-6. TEST DESIGNATION REQUIREMENT Density, g/cm³ Minimum ASTM D1505 0.94 Melt Index, g/10 minutes ASTM D1238 0.4 Maximum (190°C, 2.16 kg) **Table 5-6: Geomembrane Resin Specifications** One test shall be performed per batch of resin. The test results shall be submitted to the CQA Monitor at least seven days prior to shipping geomembrane to the site. For pre-compounded resin, the base resin density (prior to the addition of carbon black) shall be provided on the QC submittals. #### 5.6.4.2.7 Geomembrane Rolls The geomembrane rolls shall be 60 mil-thick and 80 mil-thick seamless high density polyethylene (HDPE) produced in North America and supplied in rolls. Each roll shall be identified with a label indicating thickness, length, width and weight, manufacturer, roll number and plant location. Processing aids, antioxidants, and additives shall be identified by name and percent. The total combined percentage of all additives shall be under 3.5 percent by weight of the finished geomembrane. All additives other than carbon black shall be no greater than 0.75% of the total allowable value of 3.5 percent. All additives shall be thoroughly dispersed throughout the geomembrane. The geomembrane shall have no holes, pinholes, bubbles, blisters, gels, undispersed resin, or contamination by foreign matter. There shall be no tears, abrasions, or cuts on liner edges. The HDPE geomembrane shall meet the Specifications presented in Sections 4.2.3.1. ### 5.6.4.2.8 Extrudate Rod or Bead The extrudate rod or bead shall be a high density polyethylene (HDPE) for use on HDPE geomembrane for extrusion welding. The rod or bead shall be manufactured from the same resin used to produce the geomembrane, and shall be provided by the same supplier. Processing aids, antioxidants, and additives other than carbon black used during manufacturing shall be identified by name and percent and the total combined percentage of processing aids, antioxidants, carbon black, and other additives shall be under 3.5 percent by weight of the finished product. All additives shall be thoroughly dispersed throughout the extrudate rod or bead. There shall be no contamination by foreign matter in the extrudate rod or bead. The extrudate rod or bead shall be of the same material type as that of the geomembrane and shall meet the criteria set forth within the required properties table (Section 4.2.3.1). There shall be one test performed per batch of extrudate rod or bead. Certified test results shall be submitted to the CQA Monitor at least seven days prior to shipping the extrudate rod or bead to the site. #### 5.6.4.2.9 Execution ### 5.6.4.2.9.1 Examination Upon notification by the CQA Monitor of release of area or areas for liner installation, the Contractor shall verify in writing that the surface on which the geomembrane will be installed is acceptable. The initiation of installation indicates acceptance of existing conditions. The Contractor shall be responsible for maintenance of the foundation surface in the accepted area or areas once installation of geomembrane begins. The maintenance of the surface includes repair or replacement of any surface damaged following acceptance. #### 5.6.4.2.9.2 Preparation The Contractor shall maintain the surface suitability and integrity until the lining installation is completed and accepted. The Contractor shall repair rough areas and any damage to the subgrade caused by installation of the lining and fill any ruts caused by equipment prior to geomembrane deployment. In order to avoid sharp bends in the geomembrane, the Contractor shall slightly round the leading edges of the anchor trench. ## 5.6.4.2.9.3 Deployment Each panel shall be marked with an "identification code" (number or letter number) consistent with the layout plan. The identification code shall be simple and logical. The number of panels deployed in one day shall be limited by the number of panels which can be seamed or tack welded on the same day. The following procedures shall be followed by the Contractor during deployment of geomembrane: - Equipment which will damage geomembrane by handling, trafficking, leakage of hydrocarbons or other means shall not be used; - Do not allow personnel working on geomembrane to wear damaging shoes, or engage in activities that could damage geomembrane; - Do not allow clamps and other metal tools to be dropped or thrown on the geomembrane; - Unroll panels by a method that protects geomembrane from scratches and crimps and protects soil surface from damage; - Use methods to minimize wrinkles, especially differential wrinkles between adjacent panels; - · Place adequate hold-downs to prevent uplift by wind; - · Use hold-downs that will not damage the geomembrane; - Use continuous hold-downs along edges to minimize risk of wind flow under panels
(sand bags, reclaimed tires); - · Minimize direct contact with geomembrane; - Protect the geomembrane in heavy traffic areas by geotextile, extra geomembrane or other suitable materials; - Sheet surfaces will be visually inspected during unrolling of geomembrane and faulty or suspect areas shall be marked for repair or testing; and Faulty geomembrane shall be replaced at no cost to Owner. The geomembrane shall not be deployed during precipitation, in the presence of excessive moisture, in areas of ponded water, or in the presence of excessive winds. # 5.6.4.2.9.4 Field Seaming All seams shall be oriented parallel to the maximum slope; i.e., oriented down (not across) the slope. Seams shall be numbered with a numbering system which is compatible with the panel numbering system. The Contractor shall minimize the number of field seams in corners, off-shaped geometric locations and outside corners. All corners will be triangulated with off-set tie-in connections. No seaming shall be performed when deployed liner material has a temperature, as measured by a contact thermometer, which is in excess of 110° F or less than 40°. Panels shall be overlapped by a minimum of four inches. Procedures used to temporarily bond adjacent panels together shall not damage the geomembrane and shall not be detrimental to seam weld material. All tie-in "T" connections consisting of two fusion welds shall be patched with a minimum 12-inch diameter patch. Welding of HDPE membrane shall be performed prior to burial of the membrane in anchor trenches. Solvents and adhesives shall not be used for seaming or temporary bonding of membranes. During the installation and repair of all HDPE geomembrane, only approved seaming methods shall be accepted (extrusion fillet welds and fusion bonding). During the preparation of seams for welding, the Contractor shall: - · Clean surface of grease, moisture, dust, dirt, debris or other foreign material; - · Clean surface of oxidation by disc grinder not more than 1 hour before seaming (not required for HDPE fusion welding); - Use number 80 grit sandpaper for disc grinding; - Patch areas where grinding reduces the sheet thickness by more than 4 mils; - . Seams, small cuts, and scratches shall be repaired by a single extrudated bead; - Grind liner surface beyond weld bead. The ground area should extend 1/16 to 1/8 inch beyond the extrudated bead; - Use only soft bristle brush after grinding if brushing required, wire brushes shall not be used; - Cut wrinkles and "fishmouths" along ridges; - · Overlap and seam wrinkles and fishmouths; - · Patch wrinkles and fishmouths where overlap is less than 3 inches; - Use a firm, dry substrate (piece of geomembrane or other material) directly under seam overlaps where the subgrade is soft; and - · Use plywood or other firm material under seam overlaps when welding over the anchor trench. # 5.6.4.2.9.5 Geomembrane Seaming Apparatuses At least one spare operable seaming apparatus shall be maintained for each three seaming teams. The Contractor shall place a protective fabric or a piece of geomembrane beneath hot welding apparatus when resting the apparatus on the geomembrane lining. The Contractor shall provide a protective lining and splash pad large enough to catch spilled fuel under any electric generators or fuel powered equipment when it is located on the liner. All sharp parts protruding from any equipment shall be covered prior to placement on the geomembrane. Extrusion welders shall be equipped with gauges giving temperatures in the apparatus and at the nozzle. The welding technician shall purge the welding apparatus of heat-degraded extrudate for at least 1 minute before welding if the extruder is stopped for longer than three minutes. All purged extrudate shall be disposed of outside the geomembrane covered area. The welding technician shall avoid stop-start welding. The technician shall grind existing welds two inches from the point of stoppage before resuming the welding process. Leaks evident in extrusion welds will require a minimum 12-inch diameter patch of the same material. The Contractor shall restart welds two inches from the point where the edge of the patch intersects a previous weld. In performing fusion welding, the welding apparatuses shall be automated vehicular mounted device equipped with gauges giving applicable temperatures and speed. A smooth insulating plate or fabric shall be placed beneath the hot welding apparatus after usage. The Contractor shall protect against moisture buildup between sheets. No welding across previously welded seams shall be permitted. Trial welds shall be performed by both fusion and extrusion type welders prior to start of work and once at mid-day. No equipment or technician is allowed to commence welding on the liner until a trial weld sample made by that equipment and technician has met the requirements of trial welding. ## 5.6.4.2.9.6 Trial Welds Field seam tests shall be conducted on pieces of geomembrane liner to verify adequate seaming conditions at the following frequency: - At beginning of the seaming period; - · At least once for each four hours of seaming; - · At the CQA Monitor's discretion; - · For each seaming apparatus used; and - At least once before each shift for each welding technician performing seaming. Trial welds shall be performed in the areas of seaming and in contact with subgrade or geotextile to simulate the condition in the work area of the geomembrane to be seamed. The seam sample should be at least 42 inches long and 12 inches wide with seam centered lengthwise. One-inch wide specimens shall be cut from the test seam. Specimens shall be quantitatively tested by the Contractor for peel adhesion and bonded seam strength (shear). Testing shall be performed in the presence of the CQA Monitor. A trial weld passes when specimens show: - The break is a film tear bond (FTB); or - · The break is ductile; and - The strength of break is as specified in Section 4.2.12.5 of these Specifications. A break through the weld is considered a non-FTB (failure) if the break is ductile and if the strength is less than the required minimum. The welding technician shall repeat the test in its entirety when the trial weld fails. When repeated trial welds fail, the Contractor shall not utilize the seaming apparatus, or technician for welding until deficiencies or conditions are corrected and successful field test seams are achieved. # 5.6.4.2.10 Anchor Trenches Anchor trenches shall meet all requirements as set forth in these specifications and as shown on the drawings. Any changes must be submitted to the Engineer in writing prior to excavation and/or geomembrane placement. Anchor trenches shall at all times be clean of large debris (trash, rocks, etc.). All sharp edges shall be smoothed prior to geomembrane deployment. #### 5.6.4.2.10.1 Anchor Trench Backfill The anchor trench shall be backfilled after the geomembrane has been placed and approved or as directed by the CQA Monitor. Backfill material shall be the same type as was excavated. The backfill material shall be placed in 1 foot loose lifts. Backfill material shall be near optimum moisture content and compacted to a minimum of 90 percent of maximum density as determined by ASTM D698. Compaction equipment shall be approved by the CQA Monitor and shall not damage the geomembrane. #### 5.6.4.2.11 HDPE Tie-In Connection When the design involves new HPDE material to be connected with existing HDPE material, the following procedure shall be instituted: - For geomembrane, overlap of new HDPE to existing HDPE shall be at a minimum of 6 inches. At no time will any horizontal slope seams be accepted; - Extrusion welding only shall be permitted for tie-in connections; - Vacuum testing shall be allowable as non-destructive test method used to accept this area. The Engineer will observe the operation and documentation of non-destructive testing shall be completed by the Quality Control Technician; and - All extrusion welded seams on the initial overlap shall be covered with an additional layer of HDPE and shall be welded completely around that layer. # 5.6.4.2.12 Field Quality Control #### 5.6.4.2.12.1 General The Contractor shall designate a full time Quality Control (QC) Technician who shall be responsible for supervising and/or conducting the field quality control program throughout construction. The resume for the QC Technician shall be provided in the pre-construction submittals, and the QC Technicians shall not be replaced without written authorization from the CQA Monitor. There shall be a designated QC technician present at all times during each work shift. # 5.6.4.2.12.2 Non-Destructive Seam Testing Non-destructive seam testing shall be performed over the full length of welds. Testing methods and procedures will be subject to the approval of the CQA Monitor. Vacuum tests shall be performed concurrently with seaming work progress, not at completion of the project. All overlapped material, if applicable, shall be carefully trimmed using an approved cutting instrument. The "pull-tear" method of overlap removal shall not be accepted. The vacuum box assembly shall consist of the following: - Ridge housing; - Transparent viewing window; - · Soft rubber gasket attached to bottom of housing; - · Porthole or valve assembly; and - Vacuum gauge. A vacuum pump capable of delivering a minimum of 27 psi of vacuum shall be used. When vacuum testing, the Contractor shall: - · Clean windows, gasket surfaces, and check for leaks; - Wet a strip of geomembrane approximately 12 inches by 30 inches (length of box) with soapy solution; - · Place the vacuum box over the wetted area; - Ensure that a leak-tight seal is created; - For a period of not less than 15 seconds, examine the length of weld through the viewing window for the presence of soap bubbles; - If no bubbles appear after 15 seconds, move the box over the next adjoining area with a minimum three inches of overlap and
repeat the process; Alternative testing methods other than vacuum or pressure testing may be proposed by the Contractor and will be subject to the approval of the CQA Monitor prior to their use. # 5.6.4.2.12.3 Destructive Seam Sampling For destructive seam testing, the CQA Monitor shall be provided with a minimum of one destructive sample per 500 feet of seam length. The location shall be selected by the CQA Monitor and the Contractor shall not be informed in advance of the sample location. The Contractor shall visually observe, mark and repair suspicious looking welds before release of a section to the CQA Monitor for destructive sample marking. The Contractor shall cut samples as seaming and non-destructive testing progresses and prior to completion of liner installation, shall mark samples with consecutive numbering and seam location numbers. The Contractor shall record, in written form, date, time, location, seam number, ambient temperature, seaming unit number, name of seamer, welding apparatus temperatures, and pass or fail description. The Contractor shall immediately repair holes in geomembrane resulting from obtaining destructive samples. The size of destructive samples shall be: - 12 inches wide by 30 inches long with the seam centered lengthwise; or - 12 inches wide by 42 inches long with the seam centered lengthwise, if the Contractor desires a sample. The Contractor shall cut the sample into two or three 14-inch long pieces and provide one piece of sample to Owner for archiving, one piece to the CQA Monitor for testing, and retain one piece, if required. The CQA Monitor will choose the piece of sample for the Contractor. In the event of a failure of the destructive test sample, the Contractor shall: - Retrace the welding path a minimum of 10 feet in both directions from failed test locations and remove, at these locations, a sample 12 inches wide by 14 inches; - Give the samples to the CQA Monitor for testing; - · Repeat the process if additional tests fail; - Reconstruct the seam between passing test locations to the satisfaction of the CQA Monitor; - Reconstruction may be by one of the following methods: - Cut out the old seam, reposition the panel and re-seam; or - Add a cap strip. Cut additional destructive samples from the reconstructed seam at the discretion of the CQA Monitor. # 5.6.4.2.12.4 Quality Control Inspection The Contractor shall inspect the seams and surfaces of geomembrane for defects, holes, blisters, undispersed raw materials, or signs of contamination by foreign matter. The Contractor shall brush, blow, or wash geomembrane surfaces if debris inhibits inspection. The Contractor shall distinctively mark repair areas and indicate the required type of repair. Holes smaller than 1/8 inch shall be repaired by one extrusion bead weld. The surface of the geomembrane shall be ground to a minimum of one inch around holes immediately before welding and shall be vacuum tested after welding. The Contractor shall mark the result of the test, date of the test, and name of the tester. Holes larger than 1/8 inch, blisters, undispersed raw materials, and contamination by foreign matter shall be patched. Tears shall also be patched with the ends of tears rounded prior to patching. Patches shall be round or oval in shape and made of the same material as the geomembrane. They shall extend a minimum of 6 inches beyond the edge of defects and shall be a minimum of 12 inches in diameter. The Contractor shall bevel the edge of the patch, heat seal to the geomembrane by an approved method, extrusion weld and then vacuum test the patch. The Contractor shall mark the result of the test, date of the test, and name of the tester. Any extrusion weld that fails shall be required to have a patch. At no time during repairs will double extrusion beads be acceptable. Daily documentation of non-destructive and destructive testing results shall be submitted to the CQA Monitor before final acceptance. The documentation shall identify seams that initially failed the test and include evidence that test seams were repaired and re-tested successfully. # 5.6.4.2.12.5 Required Field Seam Strength The following test requirements shall apply to both trial welds and destructive seam testing and, is applicable to extrusion and fusion type welds. Bonded Seam Strength (Shear) Peel Adhesion 160 ppi 104 ppi Type of Test Designation Required Seam Strength 60 mil 80 mil 120 ppi 78 ppi **ASTM D4437** **ASTM D4437** Table 5-7: Required Seam Strengths for HDPE Geomembrane For destructive seam samples each type of test (shear and peel) shall be performed by the Third-Party laboratory on five replicate specimens with an acceptable result being four out of five replicates satisfying the requirements. Breaks at weld sheet interface (adhesion) are considered a non-FTB (failure). Trial weld test results shall meet or exceed the applicable values in the above table and shall consist at a minimum of three replicate specimens or as directed by the QA Engineer. Individual test results shall be documented. A break at the weld sheet interface (adhesion) is considered a non-FTB (failure) while a break through the weld is considered a FTB if the break is ductile and if the strength meets the minimum required values; otherwise the break is considered a non-FTB (failure). When a destructive test sample fails, additional destructive samples shall be taken at a minimum of 10 feet each side of the failed sample until the seam passes the destructive test. # 5.6.4.2.12.6 Acceptance The Contractor shall retain ownership and responsibility for the geomembrane until acceptance by the Owner. The Owner shall accept the geomembrane installation when the installation is finished and the adequacy of field seams and repairs has been verified, and testing is complete. Also required are certifications, as-built drawings, and a final inspection carried out by the CQA Monitor. Any and all work required to facilitate the final inspection, such as cleaning of the liner shall be the responsibility of the Contractor. The construction area shall be cleaned of remnant pieces of geomembrane, debris, and garbage before acceptance. The inspection procedures shall be as follows: - The CQA Monitor shall be informed of readiness for final inspection when installation is finished; - In certain cases and with the CQA Monitor's approval, a section of installation may be released for inspection; - Seams, panel surfaces, and repairs shall be visually inspected during the inspection; - Defects, suspicious looking welds, permanent wrinkles, and bridging shall be distinctively marked for repair; - · Findings and corrective actions shall be documented; - Arrangements for subsequent final inspection shall be made after corrective actions have been completed; and - The results of final inspection shall be documented. #### 5.7 GEOGRIDS # 5.7.1 Physical Properties The following geogrid property values must met or exceeded by the geogrid used at the site: | Property | Units | Value | |--|--------------------|------------------| | Mass per Unit Area, ASTM D-3776 | lb/ft ² | ≥ 0.03 | | Wide Width Tensile Strength, ASTM D-4595 | lb/ft | ≥ 1500 | | Aperture Size | inch | \geq 0.8 x 0.8 | # 5.7.2 Handling and Placement The Installer shall handle all geogrids in such a manner as to ensure they are not damaged in any way, and the following shall be complied with: - On slopes, the geogrids shall be securely anchored in the anchor trench and then rolled down the slope in such a manner as to continually keep the geogrid sheet in tension. - In many cases it is advisable to pre-fusion the geogrid by hand (or with equipment) and place the first lift of cover while the geogrid is in tension. - In the presence of very strong wind, geogrids may have to be weighted with sandbags or the equivalent. Such sand bags must be removed prior to pre-tensioning of the geogrid. • Geogrids shall be cut using scissors only. If in place, special care must be taken to protect other materials from damage which could be caused by the cutting of the geogrids. # 5.7.3 Seams and Overlaps The geogrids, where used on slopes, shall be placed in continuous pieces downslope. No lateral joining is normally required, i.e., edge to edge placement will be sufficient. In some special cases, geogrids may require edge to edge seaming. In such cases the Designer will prepare seaming specifications which will be added to these specifications. No horizontal seams shall be allowed on side slopes, i.e., seams shall be along, not across, slopes. # 5.7.4 Repair Any damaged roll of geogrid shall be discarded. No repairs will be allowed. #### 5.7.5 Placement of Soil Materials The Installer shall place all soil materials located on top of a geogrid, in such a manner as to ensure: - no damage of the geogrid; and. - minimal slippage of the geogrid on underlying layers. # 5.8 GEONETS # 5.8.1 Physical Properties The following geogrid property values must met or exceeded by the geonets used at the site: | Property | Units | Value | |--|--|---| | Thickness, ASTM D-1777 Density, ASTM D-792 or ASTM D-1505 Mass per Unit Area, ASTM D-3776 Polyethylene Content Carbon Black Content, ASTM D-1603 Melt Index, ASTM D-1238 (Condition 190/216) Tensile Strength, ASTM D-1682 ¹ Transmissivity, ASTM D-4716 ² 1. Test method modified as follows: | inches gm/cm ³ lb/ft ² % gm/10 min lb/in m ² /sec | ≥ 0.20
$\geq
0.94$
≥ 0.16
≥ 95
2.0 - 3.0
≤ 1.0
≥ 40
$\geq 1 \times 10^{-3}$ | - a) Use 4 x 8 in specimens. - B) Use test rate of 8 in/min - c) Continue test until first strand separates completely - d) Report averages of 5 tests in each direction (machine and cross) - 2. Gradient = 1.0, Confining Pressure = 15,000 psf, measured between two steel plates one hour after application of confining pressure. # 5.8.2 Handling and Placement The Installer shall handle all geonets in such a manner as to ensure the geonets are not damaged in any way, and the following shall be complied with: - On slopes, the geonets shall be secured in the anchor trench and then rolled down the slope in such a manner as to continually keep the geonet sheet in tension. If necessary, the geonet shall be positioned by hand after being unrolled to minimize wrinkles. Geonets can be placed in the horizontal direction (i.e., across the slope) in some special locations (e.g., at the toe of a slope, if an extra layer of geonet is required, this extra layer of geonet can be placed in the horizontal direction). Such locations shall be identified by the Designer in design drawings. - In the presence of wind, all geonets shaTI be weighted with sandbags or the equivalent. Such sandbags shall be installed during placement and shall remain until replaced with cover material. - Unless otherwise specified, geonets shall not be welded to geomembranes. - Geonets shall only be cut using scissors. - The Installer shall take any necessary precautions to prevent damage to underlying layers during placement of the geonet. - During placement of geonets, care shall be taken not to entrap in the geonet dirt or excessive dust that could cause clogging of the drainage system, and/or stones that could damage the adjacent geomembrane. If dirt or excessive dust is entrapped in the geonet, it should be hosed clean prior to placement of the next material on top of it. In this regard, care should be taken with the handling of sandbags, to prevent rupture or damage of the sandbag. - Care should be taken not to leave tools in the geonet. #### 5.8.3 Stacking and Joining When several layers of geonets are stacked, care should be taken to prevent strands from one layer from penetrating the channels of the next layer, thereby significantly reducing the transmissivity. This cannot happen if stacked geonets are placed in the same direction. A stacked geonet shall never be laid in perpendicular directions to the underlying geonet (unless otherwise specified by the Designer). In the corners of side slopes of rectangular landfills, adjacent overlapping geonets are usually perpendicular and special precautions shall be taken as discussed below. Adjacent geonets shall be joined according to construction drawings and s.pecifications. As a minimum, the following requirements shall be met: - Adjacent rolls shall be overlapped by at least 4 in. (100 mm). These overlaps shall be secured by spot welding or tying. - Tying can be achieved by strings, plastic fasteners, or polymer braid. Tying devices shall be white or yellow for easy inspection. Metallic devices are not allowed. - Spot welding or tying shall be every 5 ft. (1.5 m) along the slope, every 2 ft. (0.6 m) across the slope, and every 6 in. (0.15m) in the anchor trench. - In the corners of the side slopes of rectangular landfills, where overlaps between perpendicular geonet strips are required, an extra layer of geonet shall be unrolled along the slope, on top of the previously installed geonets, from top to bottom of the slope. - When more than one layer of geonet is installed, joints shall be staggered. #### 5.8.4 Repair Any holes or tears in the geonet shall be repaired by placing a patch extending 2 ft. (0.6 m) beyond edges of the hole or tear. The patch shall be secured to the original geonet by spot welding or tying every 6 in. (0.15 m). If the hole or tear width across the roll is more than 50% the width of the roll, the damaged area shall be cut out and the two portions of the geonet shall be joined. # 5.8.5 Placement of Soil Materials Although soil should never be placed in contact, with geonets, the Installer shall ensure that all soil materials such as primary clay liner and earth cover, are placed in such a manner as to ensure: - the geonet and underlying lining materials are not damaged; - minimal slippage of the geonet on underlying layers occurs; and - no excess tensile stresses occur in the geonet. # 5.9 TEST FILL PROGRAM #### 5.9.1 PURPOSE AND SCOPE The purpose of the test fill is to establish a sequential and logical approach for the development of placement and compaction procedures to be used during construction of cohesive soil liners as an indicator that the soil liners are constructed in a way that meets design performance specifications. The test fill program will allow the Contractor, the Design Engineer, and the Construction Quality Assurance (CQA) Engineer to identify appropriate placement and compaction procedures by establishing relationships between various compaction parameters, density, water content, Atterberg limits, particle size distribution, and permeability of the fill. Once the construction procedures have been established by the test fill program, the Contractor and the CQA Engineer will monitor the cohesive soil liner construction procedures as an indicator that the design performance specifications are being achieved. Test fill construction procedures will include measuring lift thickness, counting the number of compactor coverages, and performing inplace density and moisture content tests to verify that the specified degree of compaction is achieved. The test fill will be constructed in uniform horizontal lifts of uniform thicknesses. This test fill program documents the requirements for constructing the test fill (Figure 5-1). The test fill program will include: - sub-grade preparation - construction of a 2-foot-thick test fill - inspection and testing of the test fill - sampling of portions of the test fill The test fill program described in this appendix may be modified based on site specific design and construction considerations. Feasibility testing of clay sources will have been performed before the start of the test fill. These tests should provide the basic relationship of permeability with varying density and moisture content. A typical representation of compaction and laboratory permeability test results for one clay source is shown on Figure 5-2. # 5.9.2 CONSTRUCTION EQUIPMENT The equipment to be used for the test fill shall be proposed by the Contractor, and approved by the CQA Engineer and Project Manager. # 5.9.3 TEST FILL MATERIAL Test fill material shall be approved by the CQA Engineer. The Material shall be an inorganic cohesive soil with a plasticity index (PI) ranging between 10 and 40; at least 50 percent of the soil shall pass the No. 200 sieve. As approved by the CQA Engineer, small quantities of fill with PI greater than 40 may be allowed if such materials are thoroughly mixed with other less plastic soils. Other materials may be considered based upon laboratory testing and upon approval of the Project Manager. The maximum particle size shall be 4 inches. No frozen material shall be used, and in-place material that becomes frozen prior to completion of operations shall be removed. # 5.9.4 TEST FILL CONSTRUCTION # 5.9.4.1 Sub-grade Preparation The area within the limits of the test fill shall be cleared and grubbed of all trees, debris, brushes, stumps, roots, trash, and any other vegetation or objectionable material. Following clearing and grubbing, the area shall be stripped of topsoil. Topsoil shall be stockpiled in an area designated by the Project Manager. The surface of the sub-grade shall be proof-rolled so as to be free of soft zones, irregularities, loose earth, and abrupt changes in grade. The sub-grade and test fill shall be sloped at a 2 percent grade. No standing water or excessive moisture shall be allowed on the surface of the sub-grade. The surface shall be inspected by the CQA Engineer prior to beginning construction of the test fill. #### 5.9.4.2 Configuration The test fill shall be a rectangle approximately 60 feet long by 20 feet wide (Figure 5-1). The test fill shall be constructed to a thickness of 2 feet in uniform horizontal lifts. Lines and grades shall be controlled by survey. #### 5.9.4.3 Fill Placement The test fill shall be constructed in uniform horizontal lifts to a total thickness of 2 feet after compaction in accordance with the procedures specified below. The procedures, which vary with the lift considered, are intended to allow determination of a relationship between soil compaction criteria, which include density and moisture content, permeability, and compaction method parameters. Compaction method parameters include: (1) compactor characteristics, (2) thickness of compacted/uncompacted layers, (3) number of compactor coverages, and (4) soil moisture content. #### 5.9.4.3.1 First Lift - 1. The first lift of test fill material shall be placed to a thickness resulting in 6 inches after compaction. - 2. Soil moisture content shall be maintained between -2 and +4 percentage points of the optimum water content determined by the CQA Engineer. The Contractor shall adjust the moisture content as necessary to obtain the specified density criteria. - 3. The test fill material shall be compacted with two one-way coverages using the Contractor's proposed compaction equipment. - 4. The Contractor shall permit the CQA Engineer to perform in-place density tests and collect soil samples. - 5. Holes left in the lift shall be repaired by using tamped bentonite. The repairs shall be compacted using procedures which have been shown to meet the required moisture and density criteria. - 6. The test fill material shall be compacted a second time by applying two more one-way coverages with the selected compactor. - 7. Steps 4 and 5
shall be repeated. Second tests shall be taken near the original tests. - 8. The test fill material shall be compacted a third time by applying two more one-way coverages with the selected compactor. - 9. Steps 4 and 5 shall be repeated. Third tests shall be taken near the first and second tests. - 10. Steps 8 and 9, respectively, shall be repeated and continued until specified compaction criteria are obtained as identified by the CQA Engineer. #### 5.9.4.3.2 Second Lift 1. The loose thickness of the second lift shall be such that the thickness of the lift will be 6 inches after compaction. - 2. A competent bond with the first lift shall be achieved by the Contractor and approved by the CQA Engineer. - 3. Steps 2 through 10 of Section 5.9.2.1 shall be repeated. # 5.9.4.3.3 Remaining Lifts - 1. The loose thickness of the remaining lifts shall be such that the thickness of the lifts will be 6 inches after compaction. - 2. The procedures for compacting and testing the remaining lifts shall be those that have been tested and proven effective during the compaction of the second lift. # 5.9.4.3.4 Final Surface Preparation The surface of the test fill shall be rolled with a smooth steel drum or pneumatic roller so as to be free of irregularities, loose earth, and abrupt changes in grade. All stones larger than 1 inch shall be removed. Stones which are smaller than 1 inch and are judged to be detrimental to a geomembrane liner will be removed. One-half of the prepared soil surface shall be protected against drying with temporary plastic sheets. The sheets shall be placed immediately after the completion of surface preparation. Observations and documentation of desiccation cracking versus time shall be made on the uncovered section of the test fill. #### 5.9.5 INSPECTION AND TESTING #### 5.9.5.1 Test Fill Material The CQA Engineer shall perform testing on the cohesive soil material prior to its use in the test fill. Testing will include at least the following: - soil density/moisture content relationship using the Standard Proctor compaction method (ASTM D 698-78) - natural water content (ASTM 0 2216-80) - particle size distribution (ASTM D 422-63) - Atterberg limits (ASTM D 4318-84) - soil classification (ASTM D 2487-83) # 5.9.5.2 Sub-grade Preparation The CQA Engineer shall observe the prepared sub-grade for firmness, smoothness, and absence of abrupt changes in grade. #### 5.9.5.3 Test Fill Construction # 5.9.5.3.1 Lift Compaction For the first and second lifts, the CQA Engineer shall perform the following activities: - estimate the thickness of the loose lifts - count the number of compactor coverages and observe compactor coverage of the test fill (Figure 1) - at every two (2) coverages, perform a minimum of eight nuclear gauge in-place density and moisture readings (ASTM D 2292-81) and a minimum of two in-place density tests using the sand-cone method (ASTM D 1556-82) to verify the nuclear gauge readings; compute degree of compaction (i.e., in-place dry density divided by the Standard Proctor maximum dry density); collect four additional soil samples for moisture content determination (ASTM D 2216-80) - observe the repair of holes left in the lift as a result of density testing and soil sample collection - continue in-place density testing and moisture content determination to enable development of a curve giving in-place dry density versus number of compactor coverages for each lift thickness (Figure 5-3) For each of the remaining lifts, the CQA Engineer shall perform the following activities: - verify that the thickness of the loose lift does not exceed the loose thickness determined from testing of the second lift - count the number of compactor coverages, determined from testing of the second lift, which are necessary to achieve the specified density and observe compactor coverage of the test fill - perform a minimum of eight nuclear density tests and two sand-cone density tests per lift to verify the adequacy of the construction procedures previously established The CQA Engineer shall collect a minimum of four (4) undisturbed Shelby tube samples or 8 inch x 8 inch x 6 inch undisturbed block soil samples from varying depths of the completed test fill. The samples shall be waxed or otherwise protected to retain natural moisture and tested in the laboratory for the following: - hydraulic conductivity (permeability) using water as the permeant - dry density - particle size distribution (ASTM D 422-63) - Atterberg limits (ASTM D 4318-84) - soil classification (ASTM D 2487-83) - soil moisture content (ASTM D 2216-80) The CQA Engineer shall observe the test fill to verify the adequacy of the bonding between adjacent lifts. Such observation shall be exercised on the portion of the test fill which has been excavated to permit removal of undisturbed soil block samples and or the sand-cone density testing. # 5.9.5.3.2 Final Surface Preparation The CQA Engineer shall observe the prepared surface for firmness, smoothness, and absence of abrupt changes in grade. # 5.9.5.3.3 Permeability Testing The permeability of the test fill shall be assessed by performance of a minimum of six (6) laboratory tests on specimens trimmed from the undisturbed block or Shelby tube samples tested at a location selected by the CQA Engineer. #### 5.9.5.4 Test Results The test results which will be used to verify that the specified construction procedures meet the design performance criteria shall be: - compaction testing (i.e., degree of compaction, in-place dry density, and moisture content) - results of laboratory permeability testing performed on undisturbed soil samples • soil index testing to evaluate material suitability #### 5.9.5.5 Lines and Grades The following surfaces shall be surveyed to verify that proper thicknesses have been constructed: - · prepared surface of the sub-grade - final surface of the test fill #### 5.9.6 DOCUMENTATION The CQA Engineer shall document activities associated with the construction, monitoring, and testing of the test fill. Such documentation shall include daily reports of construction activities and oral communications with the Contractor. In addition, the following shall be documented for each of the sections listed below: #### 5.9.6.1 Test Fill Material The CQA Engineer shall provide a moisture-density relationship for the test fill liner material and other and other test results as specified in Section 5.1. #### 5.9.6.2 Test Fill Construction #### 5.9.6.2.1 Sub-grade Preparation The CQA Engineer shall document observations on sub-grade preparation. #### 5.9.6.2.2 Test Fill Construction The CQA Engineer shall document activities of the test fill construction, monitoring, and testing in a test fill summary report, which shall include but not be limited to: - record of the compactor type, configuration, and weight; for sheepsfoot compactors, record the drum diameter and length, empty and ballasted weight, length and face area of feet, and yoking arrangement, if any - record thicknesses of lifts prior to and after compaction - record density versus number of compactor coverages for each lift thickness. - record the number of compactor coverages which will provide the specified degree of compaction and permeability - record the procedure to bond lifts - results of moisture, in-place density and degree of compaction - repair of holes left in the lift as a result of density testing and soil sample - results of laboratory permeability testing and other soil properties tests performed on undisturbed soil samples - as-built drawing of the test fill and locations of all test samples for each lift - cross-section of the test fill showing number of lifts and lift thickness - description of actual construction procedures - observations of test fill excavation for removal of undisturbed soil samples and observations of layer bonding. # 5.10 POLYETHYLENE PIPE AND FITTINGS # 5.10.1 Material Requirements High Density Polyethylene (HDPE) pipe and its associated fittings and joints shall meet material acceptance and construction quality requirements as seated in this Section of the CQA Plan and in the design specifications. # 5.10.1.1 Pipe HDPE pipe shall consist of Standard Dimension Ratio (SDR) pipe, as specified in the design specifications, and must conform to the requirements of ASTM D2837, Class PE3408 for a pressure rating of 160 psi at 73.4*F. HDPE pipe shall comply with the following standards: - •ASTM F714 pipe S.T.D; - •ASTM D1248 Type III, Class C, Category 5 Grade P34; - •PPI PE3408; and #### •NSF - Listed STD No. 14. # 5.10.1.2 Fittings HDPE pipe fittings shall be furnished by the Manufacturer of the pipe with which they are used and shall conform to the requirements of ASTM D3261 for standard fittings. #### 5.10.1.3 Joints Pipe joints shall be fusion welded, using only Manufacturer-approved methods and equipment. Unless otherwise approved, joints inside manholes shall be joined with mechanical transition couplings. #### 5.10.2 Manufacturers Documentation The HDPE Pipe Manufacturer shall submit documentation which demonstrates that the property values of the pipe meet the design specifications and that quality control measures are taken during manufacture. # 5.10.2.1 Certification of Property Values Prior to the installation of HDPE pipe, the HDPE Pipe Manufacturer will provide to the CQA Consultant: - A properties sheet including, at a minimum, all specified properties measured using test methods indicated in the contract documents or equivalent; - A list of quantities and descriptions of materials other than the base resin which comprise the pipe; and - A certification that property values given in the properties sheet are minimum values and are guaranteed by the HDPE Pipe Manufacturer. The CQA Consultant shall verify that: - The property values certified by the HDPE Pipe Manufacturer meet the design specifications; and - The measurements of properties by the HDPE Pipe Manufacturer are properly
documented and that the test methods used are acceptable. # 5.10.2.2 Quality Control Certificates The HDPE Pipe Manufacturer shall provide the Project Manager and the CQA Consultant with a quality control certificate for each lot/batch of HDPK pipe provided. The quality control certificate shall be signed by a responsible party employed by the HDPE Pipe Manufacturer, such as the Production Manager. The quality control certificate shall include: - Lot/batch numbers and identification; and - Sampling procedures and results of quality control tests. The CQA Consultant shall: - Verify that the quality control certificates have been provided at the specified frequency for all lots/batches of pipe, and that each certificate identifies the pipe lot/batch related to it; and - Review the quality control certificates and verify that: the certified properties meet the design specifications. The CQA Consultant shall notify the Project Manager of any deviation. #### 5.10.3 Fusion Process for Joints HDPE pipes and fittings shall be joined by the Pipe Installer using the procedures outlined below, unless otherwise specified. # 5.10.3.1 Preparation Delivered pipes and fittings shall be examined by the Pipe Installer. The Installer shall verify that pipes and fittings are not broken, cracked, or contain otherwise damaged or unsatisfactory material. Prior to fusing, the Installer shall verify that the fusion surface area is clean and free of moisture, dust, dirt, debris of any kind, and foreign material. The CQA Consultant shall notify the Project Manager of any deviation. #### 5.10.3.2 Weather Conditions for Butt Fusion Butt-fusion of HDPE pipe joints is normally done in uncontrolled atmospheres. Fusion of the HDPE joints shall be performed at temperatures above 32'F, unless otherwise authorized in writing by the Project Manager. #### 5.10.3.3 General Butt-Fusion Procedure Unless otherwise specified, the general butt-fusion procedure used by the Installer shall be as follows: - Be sure that the surfaces of the fusion tools, pipe and fittings are free of moisture and debris; - Heat the surfaces to be joined both the pipe and fittings simultaneously at the prescribed temperature for a specified time; - Remove the heater bring melted surfaces together; and - Hold until solidified. These steps are described in more detail below. - With a clean rag, wipe both inside and outside surfaces of the two ends to be joined to remove dirt and foreign material; - Install pipe in fusion machine, allowing pipe ends to protrude I to 2 inches (24 mm to 50 mm) past face of jaw; - Slide facer so that it can be placed between pipe ends. Cut pipe until the stops on each side of the facer are against the clamp bushings at the front and rear. Separate the two pipe ends by opening pipe jaws, turn off motor, and move facing unit to storage position. The ends are properly faced when both stationary and movable clamps are against the stops on each side of the facing unit. - Bring the two pipe sections together and feel for any high-low difference at the junction of the two ends. If necessary, tighten the appropriate inside clamp until the two sections are aligned as closely as possible. After facing pipe ends, if any adjustment is made on one or boch inside clamps, the facing unit should be re-installed and the pipe ends given several turns with the cutter until the motor speeds up, before continuing with heating and fusing. - Separate the two pipe sections. Slide heater to position where it will come between pipe ends. Bring the movable pipe section against the heater until both pipe ends are in firm contact with the heater. - During the heating period, as the pipe ends melt while against the heater, the molten plastic will expand and form a melt bead around the end of the pipe. The melt bead will vary in width from about 1/16 to 3/16 of an inch (2 mm to 5 mm), depending on pipe size but should be 3/16 of an inch (5 mm) for 6 inch (150 mm) nominal diameter pipes or greater. The melt bead should be the same size around the pipe. - After melting has been completed, separate the pipe ends just enough to remove the heater and immediately bring the pipe ends together with the pressure recommended by the manufacturer. - Maintain the pressure and allow the joint to cool for 30 to 90 seconds per inch (25 mm) of pipe diameter before removing from machine. - Remove fused pipe sections from fusion machine. Allow joint to cool at least 20 minutes after removal before subjecting it to testing, bending or backfilling stresses. Reposition fusion machine so that the end of the newly fused section lies in the stationary clamps while a new pipe section is placed in the movable clamps. Repeat fusion procedure. The CQA Consultant shall verify that the general butt-fusion procedure has been followed by the Pipe Installer. # 5.10.4 Pressure Testing of Pipe Joints The joints of non-perforated HDPE pipes shall be tested by the Pipe Installer using the pressure test procedures given in ASTM C924. Other non-destructive test methods may be used only when: # 5.10.4.1 Segment Testing: Pre-Installation Similar sizes of polyethylene piping shall be butt welded together into testing segments not to exceed 2,000 feet (600 m). Segments shall be fitted with a cap on one end and testing apparatus on the other. - The segment to be tested should be laid on the ground surface and allowed time to reach constant: and/or ambient temperature before initiating the test. - The test should be performed during a period when the pipe segment will be out of direct sunlight when possible, i.e., early morning, late evening, or cloudy days. This will minimize the pressure changes which will occur during temperature fluctuations. - The test pressure shall be two times the working pressure (minimum of 10 psi (.7 kg/cm²)). - ♦ -Contractor shall submit verification and results of gauge calibration prior to (no more than 60 days) and after completion of project. - The allowable pressure drop observed during the test: shall not exceed I percent of the testing gauge pressure over a period of I hour. This pressure drop shall be corrected for temperature changes before determining pass or failure. - Owner shall be notified before testing procedure and, shall have the option of being present during the test. - Equipment for this testing procedure will be furnished by contractor. This shall consist of a. polyethylene flange adapter with a PVC blind flange equal in size to the blower inlet valve. Tapped and threaded into the blind flange will be a temperature gauge 32° F to 212° F (0 to 100° C), a pressure gauge - 0 to 15 psi (0 to 1 kg/cm²), a. "tire valve" to facilitate an air compressor hose, and a ball valve to release pipe pressure at completion of test. Polyethylene reducers shall be utilized to adapt test flange to size of pipe being tested. #### 5.10.4.2 Test Failure - The following steps shall be performed when a pipe segment fails the 1 percent 1 hour test. - The pipe and all fusions shall be inspected for cracks, pinholes or perforations. - ♦ All blocked risers and capped ends shall be inspected for leaks. - ♦ Leaks shall be verified by applying a soapy water solution and observing soap bubble formation. - All pipe and fused joint leaks shall be repaired by cutting out the leaking area and refusing the pipe. - After all leaks are repaired, a retest shall be performed in accordance with Section 5.10.4.1. #### 5.10.4.3 Final Test A final test shall be made on the completed inner conveyance pipeline in accordance with Section 5.10.4.1 and 5.10.4.2. The completed system when tested should be in its proper trench location and allowed time to reach constant and/or ambient temperature before initiating the test. Testing apparatus can be placed at location of the valve inlet before the blower. # 5.10.4.4 Test Reporting - All testing shall be reported in writing to the Owner and shall include the following information: - ♦ Date and time - Person performing test - Name of Owner representative - ◆ Pipe length, size(s), and location - ♦ Test pressure at 10 minute intervals - Ambient temperature at 10 minute intervals (measured in trench for final test) - The following information shall be reported in writing if a failure occurs: - Nature of all leaks found, and - Details of repair. The CQA Consultant shall report any deviation of testing methods or test results to the Project Manager. # LEGEND - •NR-I Nuclear guage reading on density and moisture (8 min./lift) - \times^{SC-1} Sand cone test (2 min./lift) - ⊕M-1 Moisture content sample (4 min./lift) - Shelby tube or block sample for laboratory testing (6 min. at varying depths throughout test fill) # NOTES - The configuration and location of sample selection are included as an example only and may vary from test fill to test fill. - 2. Sample locations shall be selected by the CQA engineer. - 3. Note that for WOSLF, the Test Fill will only be two feet deep, not three feet as shown above. # **FIGURE NUMBER 5-1** SUGGESTED TEST FILL CONFIGURATION FIGURE NUMBER 5-2 # PERMEABILITY, DENSITY AND MOISTURE CONDITION RELATIONSHIP (ILLUSTRATIVE ONLY) FIGURE NUMBER 5-3 # MOISTURE / DENSITY / COMPACTIVE EFFORT RELATIONSHIP # 7.1.7 Quality Control Tests [Ref.: .1624(b)(8)(C)(I)] - Particle size distribution analysis - Atterberg limits - Triaxial cell laboratory permeability's - Moisture content - Percent bentonite admixed with soil (if applicable) - Moisture-density-permeability relation # 7.1.8 Quality Assurance Tests [Ref.: .1624(b)(8)(C)(ii)] - Moisture content (compare to appropriate moisture-density-permeability relation) - Density (compare to appropriate moisture-density-permeability relation) - Permeability Any tests resulting in the penetration of the compacted clay liner shall be repaired using a sodium bentonite soil mixture. #### 7.1.9 Testing Responsibility Haywood County shall employ a qualified independent geotechnical engineering testing agency to classify
on-site and borrow soils to verify the soil comply with specified requirements and to perform required field and laboratory testing. If a contractor is employed, the contractor shall request in advance and schedule all required tests with the County's testing agency. #### 7.1.10 Inspection Activities Periodic general inspections of the closure activities shall be performed by the project engineer in order that a certification may be issued verifying that the closure of the landfill was completed in accordance with the closure plan. # 7.1.11 Sampling Strategies Sampling strategies and schedules shall be coordinated between Haywood County, the engineer, contractor and testing agency. The contractor shall provide adequate notice to the testing agency when tests are required. It shall be the responsibility of the contractor to schedule all tests with the testing agency and other parties. #### 7.1.12 Documentation Documentation and results of all tests and inspections performed shall be retained by the independent testing agency. Copies of all documentation and results shall be provided to the Certifying Engineer as the become available. #### 7.1.13 Construction Considerations Preliminary laboratory tests (Law Engineering, May 1993) indicate that the natural moisture content of the on-site silt and clay soils are somewhat similar to the optimum moisture contents. Drying of, or water addition to the cap soils may be necessary during construction to achieve the specified moisture content and compaction. Drying may be accomplished by spreading, discing, and/or harrowing. Final cap material placement should be performed during the typically drier and warmer months of the year (May through October) to facilitate accurate and acceptable permeability. The addition of the water may be required to achieve wet of optimum compaction conditions. Each lift of the barrier layer shall be compacted with a sheepsfoot roller to penetrations greater than the lift thickness. Each lift shall then be smooth rolled with a steel drum roller to promote surface water runoff while quality assurance testing is performed. During dry periods, each lift of the barrier layer shall be protected from excessive drying and related shrinkage cracking by temporarily covering the compacted lift with non-woven filter fabric, plastic sheeting, or by daily watering. Each lift shall be scarified to promote bonding and eliminate lift interfaces. #### 7.2 WASTE AREA AND VOLUME ESTIMATES The permitted White Oak Sanitary Landfill is approximately 11.3 acres in size and was permitted to receive waste for the next 2 to 5 years. According to County records 130,480.06 tons (287,057.23 cy) of municipal solid waste have been disposed in Waste Cells 1, 2, and 3 which cover approximately 72,000 SF in surface area. Assuming an 8:1 waste to soil ratio as contained in the Approved Plan, a cumulative landfill volume (including cover soils) of 322,900 cy is estimated to be in place. In February 1997, Herron Land Surveying, Inc. contracted to conduct a fly-over and generate an aerial topographic map of the existing conditions. To that date, 118,664 tons (261,061 cy) of waste were placed since the start of operations. Computer-generated triangular irregular network (TIN) surfaces were created from the aerial topographic maps from February 1997 and the as-built survey conducted by DSA Design Group, Inc. just prior to the start of operations. An average-end-area volume calculation was performed on the two TINs, and the total air space occupied by soil and waste through February 1997 was calculated to be 275,914 cy (upper bound of error of ±10%). The new Waste Cell 4 cell will provide an increase in the approximate total disposal area to 13 acres, and an additional 48,000 tons (105,500 cy including cover soils) of storage capacity. This brings the disposal capacity of the entire landfill unit from 173,600 tons (382,000 cy) to 221,600 tons (487,500 cy). # 7.3 CLOSURE SCHEDULE Unless directed otherwise by DSWM, Haywood County must continue to receive solid waste at the White Oak Landfill for at least the next twenty (20) years. The current 11.3 acre waste cell is anticipated to operate for the next two to three (2-3) years. The closure slopes are anticipated to be capped as delineated in Landfill expansion Permit applications in October 2000. The following list of tasks is anticipated at the time of closure. **Table 7-1: Closure Schedule** | TASK NO. | TASK/ACTIVITY | |----------|---| | 1 | Cease receipt of waste for disposal at landfill | | 2 | Place a notice of the intent to close the landfill in the Operating Record. | | 3 | Notify the Division of Solid Waste Management that a notice of the intent to close the landfill has been placed in the Operating Record. | | 4 | Begin closure activities of landfill no later than 30 days after the last receipt of waste. | | 5 | Complete closure within 180 days from commencement of closure activities. | | 6 | Have closure inspected and certified by Engineer. Place certification in Operating Record. | | 7 | Notify DSWM of complete closure and that certification has been placed in the Operating Record. | | 8 | Record a notation on the deed to the landfill facility property to advise any potential purchaser of the property that the land has been used as a landfill facility and its use is restricted under the closure plan approved by DSWM. Place a copy of the deed in the Operating Record. Notify DSWM of this action. | #### 7.3.1 Contacts The following persons or offices may be contacted regarding the landfill during the post-closure period. Mr. Joe Walker Mr. Jack Horton Haywood County Haywood County Solid Waste Director County Manager 1 Recycle Road 420 N. Main Street, County Annex Clyde, NC 28721 Waynesville, NC 27876 (704) 627-8042 (704) 452-6625 #### 7.3.2 Planned Use of Closed Landfill The landfill will be maintained as a short growth pasture after closure. #### 7.3.3 Post-Closure Care Complete inspections of the closed landfill shall be made, at a minimum, every six months for up to 30 years after closure. The duration of post-closure care may be shortened by DSWM if the landfill owner demonstrates that the reduced period is sufficient to protect human health and the environment or lengthened if DSWM determines that a longer period is necessary to protect human health and the environment. Proper completion of post-closure care must be certified by a registered professional engineer. The post-closure certification shall be placed in the Operating Record and DSWM shall be notified of this action. The conditions of the items listed below and any necessary repairs made shall be documented. Figure 7a - Post-Closure Care Inspection Report may be used for the documenting of post-closure inspection activities. All documentation of post-closure activities shall be filed in the Operational Record. 1. The integrity and effectiveness of the cap system shall be maintained, including making repairs to the cover as necessary to correct the effects of settlement, subsidence, erosion, or other events, and preventing run-on and run-off from eroding or otherwise damaging the cap system. Tree growth and deep rooted vegetation shall not be allowed on the capped areas. Gas vents in the cap system shall be inspected for damage and proper operation. - 2. Groundwater and surface water shall be maintained in accordance with the NC Water Quality Monitoring Guidance Document for Solid Waste Facilities and the approved *Transition Plan* Monitoring reports and notes shall be kept in the Operational Records for review by DSWM. - 3. All permanent erosion and sediment control measures and devices shall be maintained, including: sediment basins, channels, and ground cover. - 4. Explosive gas monitoring shall be performed in accordance with the approved Transition Plan. - 5. Monitoring reports and notes shall be kept in the Operational Records for review by DSWM. # Figure 7-1: Post-Closure Care Inspection Report # WHITE OAK LANDFILL | Date: | Inspected By: | | |-------------------------|--------------------------|---------------------------------------| | | | | | CAP SYSTEM | | | | Check: | Condition/Actions Taken: | | | Settlement | | | | Subsidence | | | | Erosion | | | | Ponded Water | - | · · · · · · · · · · · · · · · · · · · | | Vegetative Cover | | | | Gas Vent Operation | | | | Tree Growth | | | | Channels & Slope Drains | × . | | | Other | | | | Notes: | | | | | | | | | | | # **EROSION & SEDIMENT CONTROL** | Check: | Conditions/Actions Taken: | | |----------------------|--------------------------------|--| | Sediment Basin | | | | Silt Fence (Temp.) | | | | Diversions/Channels | | | | Vegetative Cover | | | | Other | · | | | Notes: | | | | | | | | | | | | GROUNDWATER MONITO | RING (Attach Copy of Results) | | | Date Sampled: | Well Sampled: | | | Sampled By: | Tested By: | | | Notes: | | | | | | | | SURFACE WATER MONITO | ORING (Attach Copy of Results) | | | Date Sampled: | | | | Sampled By: | | | | | | | | | | | | Date Performed: | Performed By: | |----------------------------|---------------| | Notes: | <u>OTHER</u> | | | $(A_{ij},A_{ij}) = A_{ij}$ | | | | | | | | | | | | | | Table 7-2: Post-Closure Care Schedule | ACTIVITY | REFERENCE ¹ | FREQUENCY | |--|------------------------|---------------| | Explosive Gas Monitoring - at wells at the compliance boundary, and on-site structures | Chapter 7 | Quarterly | | Groundwater and Surface Water Monitoring. | Chapter 12 | Semi-Annually | | Overall Inspection- including cap, gas venting
system, and erosion and sediment control. | Chapter 9 | Semi-Annually | | Revise Post-Closure Cost Estimate | Chapter 10 | Annually | # 7.4 CLOSURE AND POST-CLOSURE ASSUMPTIONS AND REQUIREMENTS The following estimate includes the cost associated with closure and post-closure care of the White Oak Landfill. Estimates are based on the hiring of a third party to close the landfill at a point in landfill development that would be the most costly; i.e., when un-capped aerial limits of the landfill are greatest and post-closure care activities must be performed for the entire post-closure care period. The estimate shall be adjusted annually for inflation within 60 days prior to the anniversary date of the establishment of the financial instrument until the end of the post-closure care period. The estimate shall be increased if changes in the Closure or Post-Closure Plans or landfill conditions cause an increase in the estimated cost of closure or post-closure care at any time. The estimate may be reduced, with DSWM approval, if the cost estimate exceeds the maximum cost of the closure and post-closure care remaining over the post-closure care period. Two (2) copies of the Closure and Post-Closure Cost Estimate are provided below. ¹ DSA Design Group, Inc. Haywood County White Oak Sanitary Landfill Transition Plan. April, 1994. # Closure and Post-Closure Cost Estimate - Copy No. 1 | CLOSURE COSTS | | | April 1994 | |--|-----------|------------|-----------------| | ITEM/TASK QUANTITY UNIT COST | | EXTENSION | | | Final Cap System | | | | | Barrier Layer (materials, installation, complete) | 36,500 CY | \$21.00 | \$766,500.00 | | Erosion Layer (materials, installation, complete) | 9,300 CY | 1.25 | 11,625.00 | | Seeding (include. Mulch, fertilizer, complete) | 15 AC | 600.00 | 9,000.00 | | 30 mil FML (materials, installation, complete) | 11.3 AC | 8,900.00 | 100,570.00 | | Sediment and Erosion Control | | | | | 15" Slope Drain Pipe (materials, installation, complete) | 460 LF | 20.00 | 9,200.00 | | 18" Slope Drain Pipe (materials, installation, complete) | 185 LF | 30.00 | 5,550.00 | | 21" Slope Drain Pipe (materials, installation, complete) | 140 LF | 40.00 | 5,600.00 | | 24" Slope Drain Pipe (materials, installation, complete) | 140 LF | 45.00 | 6,300.00 | | Other | | | | | Contractor Profit | JOB | 5% | 45,718.00 | | Mobilization/Demobilization | JOB | 5% | 45,718.00 | | QA/QC Testing, Engineering and Certification | JOB | 250,000.00 | 250,000.00 | | Administrative | JOB | 10,000.00 | 10,000.00 | | Contingency | JOB | 10% | 91,435.00 | | TOTAL CLOSURE COSTS | | | \$ 1,357,216.00 | | POST-CLOSURE CARE COSTS | | | | | |---|------------|------------|-----------------|--| | ITEM/TASK | QUANTITY | UNIT COST | EXTENSION | | | Inspections/Monitoring | | | | | | General Inspections (Semi-Annually) | 60 EVENTS | \$1,200.00 | \$72,000.00 | | | Gas Monitoring (9 Wells, Quarterly) | 120 EVENTS | 1,200.00 | 144,000.00 | | | Water Quality Monitoring (17 Locations, Semi -Annually) | 60 EVENTS | 32,000.00 | 1,920,000.00 | | | Maintenance | | | | | | Leachate Management of the existing system (assuming the facility will function as projected in the application) | 30 YRS | 175,000 | 5,250,000.00 | | | Fill Erosion/Settlement (Annually) | 30 EVENTS | 5,000.00 | 150,000.00 | | | Mow/Bush Hog (Annually) | 30 EVENTS | 1,000.00 | 30,000.00 | | | General Repair (Annually) | 30 EVENTS | 1,500.00 | 45,000.00 | | | Other | | | | | | Record Keeping/Administrative | 30 YRS | 1,500.00 | 45,000.00 | | | Contingency | JOB | 15% | 1,148,400.00 | | | TOTAL POST CLOSURE CARE COSTS | | | \$8,804,400.00 | | | TOTAL CLOSURE AND POST CLOSURE CARE | COSTS | | \$10,161,616.00 | | # Closure and Post-Closure Cost Estimate - Copy No. 2 | CLOSURE COSTS | | | April 1994 | | |--|-----------|------------|--------------|--| | ITEM/TASK | QUANTITY | UNIT COST | EXTENSION | | | Final Cap System | | | | | | Barrier Layer (materials, installation, complete) | 36,500 CY | \$21.00 | \$766,500.00 | | | Erosion Layer (materials, installation, complete) | 9,300 CY | 1.25 | 11,625.00 | | | Seeding (include. Mulch, fertilizer, complete) | 15 AC | 600.00 | 9,000.00 | | | 30 mil FML (materials, installation, complete) | 11.3 AC | 8,300.00 | 100,570.00 | | | Sediment and Erosion Control | | | | | | 15" Slope Drain Pipe (materials, installation, complete) | 460 LF | 20.00 | 9,200.00 | | | 18: Slope Drain Pipe (materials, installation, complete) | 185 LF | 30.00 | 5,550.00 | | | 21" Slope Drain Pipe (materials, installation, complete) | 140 LF | 40.00 | 5,600.00 | | | 24" Slope Drain Pipe (materials, installation, complete) | 140 LF | 45.00 | 6,300.00 | | | Other | | | | | | Contractor Profit | JOB | 5% | 45,718.00 | | | Mobilization/Demobilization | JOB | 5% | 45,718.00 | | | QA/QC Testing, Engineering and Certification | JOB | 250,000.00 | 250,000.00 | | | Administrative | JOB | 10,000.00 | 10,000.00 | | | Contingency | JOB | 10% | 91,435.00 | | | TOTAL CLOSURE COSTS | | \$1 | ,357,216.00 | | # **Closure and Post-Closure Cost Estimate - Copy No.2** | POST-CLOSUR | April 1994 | | | |---|------------|------------|--------------| | ITEM/TASK | QUANTITY | UNIT COST | EXTENSION | | Inspections/Monitoring | | | | | General Inspections (Semi-Annually) | 60 EVENTS | \$1,200.00 | \$72,000.00 | | Gas Monitoring (9 Wells, Quarterly) | 120 EVENTS | 1,200.00 | 144,000.00 | | Water Quality Monitoring (17 Locations, Semi -Annually) | 60 EVENTS | 32,000.00 | 1,920,000.00 | | Maintenance | | | | | Leachate Management of the existing system (assuming the facility will function as projected in the application) | 30 YRS | 175,000 | 5,250,000.00 | | Fill Erosion/Settlement (Annually) | 30 EVENTS | 5,000.00 | 150,000.00 | | Mow/Bush Hog (Annually) | 30 EVENTS | 1,000.00 | 30,000.00 | | General Repair (Annually) | 30 EVENTS | 1,500.00 | 45,000.00 | | Other | | | | | Record Keeping/Administrative | 30 YRS | 1,500.00 | 45,000.00 | | Contingency | JOB | 15% | 1,148,400.00 | | TOTAL POST CLOSURE CARE COSTS | | \$ | 8,804,400.00 | | TOTAL CLOSURE AND POST CLOSURE CARE COSTS | \$10,161,616.00 | |---|-----------------| | | (| # 8. WATER QUALITY MONITORING PLAN # 8.1 GROUNDWATER QUALITY MONITORING PLAN Refer to the water quality monitoring plan previously submitted by DSA Design Group in the Design Manual dated March, 1992. Thirteen groundwater monitoring wells are located at the WOSLF facility for groundwater quality monitoring. Two of these wells (MW-08 and MW-09) are wells added to the original monitoring plan. WOSLF shall sample and analyze these wells in accordance with the approved Ground Water Monitoring Plan. # 8.2 SURFACE WATER QUALITY MONITORING PLAN Refer to the water quality monitoring plan previously submitted by DSA Design Group in the Design Manual dated March, 1992. There are five surface water sampling points around the landfill site. The WOSLF shall sample and analyze water from these points in accordance with the approved Surface Water Monitoring Plan. # 8.3 SEMIANNUAL MONITORING EVENTS Each year two rounds of sampling have occurred for both the surface water and groundwater monitoring systems. These sampling events have occurred for the past 3 ½ years. All sampling results have been accepted by DSWM. The results further support this application. | Permit | Renewal, La | ndfill Expansion | 1 | White Oak Sanitary Landfill | |--------|-------------|------------------|---|-----------------------------| # APPENDIX A DSA Design Group, Inc. Operations Plan from Transition Plan, April 1994 # 7.1 Operational Drawings Refer to the previously submitted and Approved White Oak Sanitary Landfill design plans by DSA Design Group dated September, 1992 and the Approved Plans submitted by Tribble and Richardson, Inc. Also refer to the attached "as-built" drawing for other information including water quality and explosive gas monitoring locations. The landfill will be operated so as to facilitate closure at any time while keeping the height of the landfill to a minimum by phasing from low to high areas. This will be accomplished by placing waste in layers and cells as indicated in the Approved Operations documentation. Operators will keep the size of the active area to a minimum. Landfilling may begin by placing baled waste in daily lifts of up to 12 feet in depth. Each lift will be covered with 6 inches of daily cover soil and graded to drain away from the working area. When the placing of waste reaches the elevation of the top of the embankment the outside face of the waste shall be graded to match the slope of the outside face of the embankment (i.e., 3:1). Embankment faces will be covered with a minimum of 12 inches of intermediate cover soils and temporarily vegetated. The slope of the outside face of the landfill will be interrupted every 20-30 feet. in vertical height by a bench with a drainage channel (refer to the approved closure contours shown on the Tribble & Richardson plans). The benches will help increase stability and reduce the slope length and erosion of the outside face of the landfill. The bench channels will be drained via slope drain pipes similar to those being presently utilized at the landfill. Runoff from the landfill will be directed, via diversion channels, to the existing riser barrel sediment basin located to the north of the waste cell. The existing sediment basin will be excavated to its original or appropriate dimensions and regularly maintained. Maintenance shall include inspection and repair as needed to the embankment and spillway, cleaning or
replacement of the gravel filter, and other repairs to ensure proper operation of all sediment basins. Sediment shall be removed from the basin when the accumulated sediment reaches one-half of the basin or trap depth. In accordance with state regulations, a final cover layer consisting of at least 24 inches of soil (or bentonite augmented soil) with a permeability less than or equal to 1 x 10⁻⁷ cm/s covered with a 30 mil flexible membrane liner and at least 6 inches of topsoil shall be installed on the top and on outside slopes as soon as practical after the slopes are brought to final grade. The final cover shall be seeded immediately after installation to reduce erosion. Vegetation should be established within 30 working days or 120 days of completion of a phase of the landfill. The cover and embankment soils for the existing operating landfill will be excavated onsite and stockpiled near the working area to be used for operational and final cover soils. The operational soils will be obtained from the approved borrow areas. #### 7.3 Borrow Area Operations The required daily, intermediate, and final cover soils will be obtained from the existing and expanded borrow areas. The expanded borrow area consists of approximately 5 acres of wooded land that lies to the south of the borrow area currently being excavated (refer to drawings). The expanded borrow area soils were investigated by Law Engineering during the original geotechnical evaluation for the site. Test pits were excavated in the expanded borrow area in order to explore the general subsurface conditions, evaluate soil properties, and to provide information for an estimation of the quantity of cover soils available. ## 7.4 Waste Acceptance The landfill accepts only waste generated in Haywood County and does not/will not accept any of the following: - Hazardous Waste as defined in 15A NCAC 13A; - PCBs (polychlorinated biphenyls); - Liquid Sludge: - Lead Batteries; - Asbestos; and - Liquid and Wastes Containing Free Moisture including the following: - Bulk or Non-containerized Liquid Wastes unless the waste is household waste; - Septic Waste or Waste Oil; - Barrels or Drums unless they are empty and perforated sufficiently to ensure that they contain no liquid or hazardous waste; and - Containers Holding Liquid Waste unless the container is a small container similar is size to that normally found in household waste, the container is designed to hold liquids for use other than storage, or the waste is household waste. A waste is liquid, or contains free moisture, if it fails the Paint Filter Test (see Hazardous and Liquid Waste Screening Program for details). ## 7.5 Disposal Requirements The following items shall be disposed in the manner described below: - All Municipal Solid Waste received for landfilling shall be placed within the limits of the composite liner system. - Spoiled food, animal carcasses, abattoir (slaughterhouse) waste, hatchery waste, and other animal waste shall be covered immediately. - Asbestos waste, if accepted, should be covered immediately with soil in a manner that will not cause airborne conditions and must be disposed of separate and apart from other solid wastes at the bottom of the working face. It is current landfill policy not to accept asbestos for disposal. - Wastewater Treatment Sludges will only be accepted if utilized as a soil conditioner and incorporated into or applied to the erosion layer of the final cap system, but in no case greater than six inches in depth. It is current landfill policy not to accept sludge for disposal. - Tires will be collected and stored in a separate designated area at the MRF and convenience centers for periodic removal and processing, or for proper disposal. - White Goods shall be collected and stored at the MRF. The CFCs shall be removed and the remaining appliance shall be salvaged or landfilled at the bottom of the working face. Currently all white goods are being removed and reused. - Wood Waste and Yard Waste shall be disposed of at another location approved by DSWM. Currently, the approved LCID landfill in Canton is receiving this waste. # 7.6 Spreading and Compacting Requirements Operations for the landfill unit are more detailed in the Operation Plan and Operational Supplemental Document contained in the Approved Plan. Briefly, landfilling shall be performed in general accordance with the following placement requirements: - Daily placement of baled solid waste will be restricted to the smallest area feasible. Keeping the active area as small as possible will: - minimize leachate generation; - decrease the quantity (not thickness) of cover soils used; - increase bale placement efficiency; - decrease potential of litter problems (blowing waste); and - discourage scavenging and permit the bales to be placed and covered in less time. - In general, solid waste (bales) should be deposited at the bottom of the active face and placement should progress downgradient along the waste cell. Bales should be stacked according to a maximum 5:1 ratio; that is to say 5 bales should be placed along the toe before one is placed on top. This results in: - bale stability will be ensured, and the tumbling of bales will be mitigated; - better bale placement, as bales can be placed so that stormwater can shed away from the working face over covered waste; - better visibility, comfort, and safety for equipment operators; and - better litter control due to less exposure to wind and less surface area of the waste. Special daily field or disposal conditions may make downslope operations impractical. The judgement of the landfill operations manager will prevail concerning day-to-day operations. - Bales should be placed as densely as practical into daily cells. Maximum placement efficiency of solid waste can be achieved by: - placing bales in one to two-bale height lifts (no more than six feet high); - minimize soils placement between bales and maintain bale alignment to ensure uniformity; - maintain active area slopes at or less than 3:1 (33%). - Windblown waste resulting from operations shall be collected and returned to the disposal area on a regular basis. Haywood County may wish to construct a portable litter fence if it is determined there is a prevailing wind direction at the landfill. # 7.7 Hazardous and Liquid Wastes Screening Program The following screening program is a modification of the existing Random Load Inspection Program established for Haywood County. Currently, random deliveries of solid waste are inspected each week of operations at the Materials Recovery Facility (MRF) located on Recycle Road in Clyde, NC. It is important to prohibit the disposal of hazardous and liquid wastes at the White Oak Landfill due to the potential risk to human health and the environment. Provisions in the NC Solid Waste Management Rules place long-term liability on Haywood County. The Hazardous and Liquid Waste Screening Program consists of two parts, (1) Hazardous and Liquid Waste Spotting and (2) Random Load Inspections. ### **Definitions:** Characteristic Waste - Wastes which are deemed to be hazardous due to their nature. A waste is a characteristic hazardous waste if it is not a listed waste but exhibits one or more of the following four characteristics: ignitable, corrosive, reactive, or TCLP toxic. Corrosive - A waste is corrosive if the pH of the waste is less than 2 or greater than 12.5. Hazardous Waste - Wastes with characteristics, either physical or chemical, that could harm human health or the environment. A waste is categorized as hazardous if it meets either of the two following criteria: (a) a listed waste or (2) a characteristic waste. For landfilling purposes, a waste is NOT defined as hazardous if it is a household waste or household hazardous waste (HHW). Household Waste - Wastes (including garbage, trash and liquids) derived from households (including single and multiple residences, hotels, motels, and other residential sources). Household Hazardous Waste (HHW) - Waste which meets the criteria of a hazardous waste and is derived from households. Household hazardous waste is allowed, by the NC Solid Waste Management Rules, for disposal at municipal solid waste landfills. Ignitable - A waste is ignitable if it has a flash point (will ignite) at a temperature of less than 140°F, causes a fire by friction under normal circumstances, or is an oxidizer. Examples of ignitable wastes include solvents, peroxide and petroleum products. Common sources of ignitable waste include automobile repair shops, machine shops and dry cleaners. Listed Waste - Listed wastes are specific chemical compounds which have been deemed by the EPA to present significant risks to human health and the environment. The EPA's "Lists of Hazardous Wastes" are contained in 40 CFR 261.30 - 261.33 (Subpart D). Liquid Waste - Waste shall be considered liquid if the waste fails the Paint Filter Test as described below: Paint Filter Test: Place a 100 milliliter sample of waste in a conical, 400 micron paint filter. If <u>any</u> liquid passes through the filter in five minutes, the waste fails the test. Liquid wastes that are part of household waste are accepted at the landfill. PCBs - Polychlorinated biphenyls (PCBs) are a toxic material with the potential for poisoning animal and plant life and do not degrade over time. Examples of materials which may contain PCBs are transformers, capacitors and hydraulic systems. Reactive - A waste is reactive if it is normally unstable; reacts violently with water; forms an explosive mixture with water; contains quantities of cyanide or sulfur that could be released to the air; or can easily be detonated or exploded. TCLP Toxic - A waste is TCLP (Toxicity Characteristic Leaching Procedure) toxic if the concentration of any of the constituents listed below exceeds the standard assigned to that substance shown in parentheses. | Arsenic (5.0mg/l) | Cresol (200.0) | Methoxychlor (10.0) |
----------------------------|----------------------------|-------------------------------| | Barium (100) | 2,4-D1 (10.0) | Methyl ethyl ketone (200.0) | | Benzene (0.5) | 1,4-Dichlorobenzene (7.5) | Nitrobenzene (2.0) | | Cadmium (1.0) | 1,2-Dichloroethane (0.5) | Pentachlorophenol (100.0) | | Carbon Tetrachloride (0.5) | 1,1-Dichloroethylene (0.7) | Pyridine (5.0) | | Chiordane (0.03) | 2,4-Dinitrotoluene (0.13) | Selenium (1.0) | | Chiorobenzene (100.0) | Endrin (0.02) | Silver (5.0) | | Chloroform (5.0) | Heptachlor (0.008) | Tetrachioroethylene (0.7) | | Chloroform (6.0) | Hexachlorobenzene (0.13) | Toxaphene (0.5) | | Chromium (5.0) | Hexachloroethane (3.0) | Trichloroethylene (0.5) | | o-Cresol (200.0) | Lead (5.0) | 2,4,5-Trichlorophenol (400.0) | | m-Cresol (200.0) | Lindane (0.4) | 2,4,6-Trichlorophenol (2.0) | | p-Cresol (200.0) | Mercury (0.2) | 2,4,5-TP (Silvex) (1.0) | | | | Vinyl Chloride (0.2) | The TCLP is designed to detect heavy metals, pesticides and a few other organic and inorganic compounds in order to prevent groundwater contamination by highly toxic materials. ## Hazardous and Liquid Waste Spotting: County personnel working at the scales, MRF and the active face of the landfill shall watch for suspicious wastes at all times. Personnel shall watch for the following: - Hazardous placards, labels or markings - Liquids - Powder, dust, or vapors - Sludges - Bright or unusual colors - Drums or commercial size containers - "Chemical" or unusual odors - Other waste not accepted at the landfill MRF personnel shall pay special attention to waste originating from: - auto repair and machine shops (solvents, paint wastes, lead acid batteries, grease and oil), - · dry cleaners (filters containing dry cleaning solvents), and - other industries which generate a variety of undesirable wastes; e.g. chemical and related products, petroleum refining, primary metals, electrical and electronic machinery. IF HAZARDOUS, LIQUID OR SUSPICIOUS WASTE IS DISCOVERED, landfill personnel shall proceed in accordance with the following: - Instruct the hauler to remain at the MRF until waste acceptance is determined by the Haywood County Emergency Management Coordinator and the appropriate information is obtained from the hauler to complete the Hazardous and Liquid Waste Screening Report. - Complete a Hazardous and Liquid Waste Screening Report and place a copy of the Report in the Operating Record. If the waste is identified while still in the haul vehicle, the MRF/landfill manager may refuse the load, however the following steps still must be completed. - 3. Contact the Haywood County Solid Waste Director Keith Burris (704-627-8137) and the Haywood County Emergency Management Coordinator Nolan Palmer (704-452-6660). - 4. Segregate the suspicious waste if safe to do so. 5. Allow the Emergency Management Coordinator to determine if the waste is hazardous or liquid. If the waste is determine to be hazardous or suspicious, Haywood County Emergency Management Personnel will: - a. Notify the Local Office of Emergency Management (Asheville) and the State Office of Emergency Management (Raleigh). - b. Contact a licensed hazardous waste hauler to remove and properly dispose of the waste, or advise the original hauler to properly remove and dispose of the waste. A list of licensed hazardous waste cleanup contractors is available from the Haywood County Emergency Management Coordinator. - c. The MRF/landfill manager shall complete the remaining steps of this procedure. If the waste is determined to be liquid (and non-hazardous) by the Haywood County Emergency Management Personnel, the MRF/landfill manager will: - a. Require the hauler of the waste to remove the liquid waste from the MRF, or arrange for its proper transport and disposal. - b. Refer to Section 7.4 <u>Waste Acceptance</u> for requirements on the acceptance of liquid waste. - c. Complete the remaining steps of this procedure. - 6. If waste is to be removed from the site or if further on-site analysis is required and must remain on site overnight, cover the waste securely with a waterproof tarp or segregate the waste to a dry, covered area within the MRF. - 7. Notify the Division of Solid Waste Management (919-733-0692) within 24 hours of attempted disposal of any waste the landfill is not permitted to receive, including hazardous and liquid wastes, PCBs, and waste from outside Haywood County. # Random Load Inspections: Random Load Inspections shall be performed on randomly selected loads originating in part or total from commercial and/or industrial sources. Loads consisting entirely of household (residential) waste should not normally be included in the Random Load Inspection Program. Household hazardous/liquid waste is accepted at the White Oak Landfill, however, landfill personnel shall stay alert to household hazardous/liquid waste for their own protection. #### Selection of Random Loads: The Haywood County MRF receives approximately 75 loads of municipal solid waste per day. One (1) Random Load Inspection shall be performed each week, however, all loads deemed by the MRF operator to be suspicious should be inspected and documented. The random load to be inspected will be determined by selecting the day of the week and the time of day at which the load crosses the MRF scale. Each operating week prior to opening for disposal operations, the MRF personnel will randomly select a day and time (e.g. Tuesday, 10:45 a.m.). The first load of waste, containing all or part commercial or industrial waste, which crosses the scales on or after the selected time will be the load inspected that day. If the randomly selected load is determined to consist entirely of household waste (no commercial or industrial waste) then the inspection shall be performed on the next load crossing the scales containing, in part or total, commercial and/or industrial waste. #### Random Load Inspection Procedure: - Prior to accepting waste the MRF operator will designate an area to be used for random load inspection. The designated area shall be dry and away from other received waste on the MRF floor. - 2. The randomly inspected vehicle will be directed to the designated area. - 3. The waste should be inspected, as completely as possible, while still in the vehicle before dumping the load. If any of the items listed in step 5 below are observed then the operator should request that the hauler remain on site until waste acceptance is determined by the Haywood County Emergency Management Coordinator and the appropriate information is obtained from the hauler to complete the Hazardous and Liquid Waste Screening Report. The operator should then complete the Hazardous and Liquid Waste Screening Report and contact the Haywood County Solid Waste Director Keith Burris (704-627-8137) and the Haywood County Emergency Management Coordinator Nolan Palmer (704-452-6660). Allow the Emergency Management Coordinator to determine the method of disposal of the waste. - 4. If no hazardous or liquid wastes are initially observed in Step 3 then the load shall be dumped in the area designated in Step 1 and spread out with a loader. Additional spreading of the load shall be carefully performed by MRF personnel. Any bagged or baled waste shall be broken up and spread out for observation. - 5. MRF and landfill personnel shall perform a visual inspection of the waste. Below is a list of items to look for: - Hazardous labels or markings - Liquids - Powder, dust, or vapors - Sludges - Bright or unusual colors - Drums or commercial size containers - "Chemical" or unusual odors - Other waste not accepted at the landfill - 6. Complete the Hazardous and Liquid Waste Screening Report and place a copy in the landfill's Operating Record. This report should be completed for each random load inspection whether or not hazardous/liquid waste is found. - 7. If hazardous, liquid or suspicious waste is found, landfill personnel should follow the procedure outlined above entitled "IF HAZARDOUS, LIQUID OR SUSPICIOUS WASTE IS DISCOVERED". #### WHITE OAK LANDFILL/MRF | Date: | Inspector: | | | |----------------------|--|---|---| | Time: | Weather: | | | | Screening Type: | | | | | R | andom Load Inspection, | Spotted at Working Face/MRF, | Spotted in Haul Vehicle | | B. HAULER INFOR | MATION: | | | | Hauler Name: | ™ , | Vehicle No./Tag No.: | Weight of Load: | | | No.: | | Hauler Phone No.: | | Waste Generators: | | | | | | | | | | C. WASTE INFORM | | | | | Waste Identified as: | | lon-Liquid (Load acceptable) | | | | Suspicious (Explainment) Hazardous Waste | | | | | Liquid Waste (Exp | | | | Notes: | | | | | | | | | | | | • | | | D. DISPOSAL INFO | | | | | Waste Disposal: | Accepted | round by baular | | | | Refused (Rem | temporarily stored on site for furthe | r tests (Attach additional | | | documentation | n) - | | | | | nauler licensed to transfer hazardou | s waste (Attach additional | | | documentation | n) | | | GENERAL INSTRUC | | | | | | | | mpleted upon either of the following | | instances: | A Random Load Inspe | | e landfill gate, scales, or active face. | | | - Sporting of a nazardot | | o incident gard, obelied, or delive idea. | | active face. | Special attention shall be | nt for possible hazardous and liquic
given to waste loads originating fro
quid wastes are acceptable at the I | i wastes at all times at the gate and
m commercial and industrial sources.
andfill. | - 2. If a hazardous, liquid or suspicious waste is discovered while in a haul vehicle or on the landfill contact the Haywood County Solid Waste Director and the County Emergency Management Coordinator. - 3. Notify the Division of Solid Waste Management (919-733-0692) within 24 hours of
<u>attempted</u> disposal of <u>any</u> waste the landfill is not permitted to receive, including hazardous and liquid wastes, PCBs, and waste from outside of Haywood County. - 4. Place a copy of all completed Hazardous/Liquid Waste Screening Reports in the Operating Record. - 5. Refer to the White Oak Landfill Transition Plan for more detailed information and instructions. Solid Waste Director - Keith Burris (704)627-8137 Emergency Management Coordinator - Nolan Palmer (704)452-6660. #### 7.8 Cover Material Requirements All disposed solid waste must be covered with six inches of daily cover soils at the end of each operating day, or at more frequent intervals if necessary, to control disease vectors, fires, odors, blowing litter, and scavenging. Areas which will not have additional wastes placed on them for 12 months or more, but where final termination of disposal operations has not occurred, shall be covered with a minimum of 12 inches of intermediate cover soils and vegetated. ## 7.9 Disease Vector Control The appropriate use of daily and intermediate cover and the <u>Disposal Requirements</u> outlined in Section 7.5 of this chapter should be utilized by landfill personnel to control on-site populations of rodents, flies, mosquitoes, other animals, or insects, capable of transmitting disease to humans. If additional means of control are deemed necessary, landfill personnel shall contact the Waste Management Specialist, Jim Patterson (704-251-6208) for the facility regarding alternative solutions. Do not apply insecticides, pesticides or other chemicals to the landfill. #### 7.10 Explosive Gas Control Methane gas (CH₄) is a by product of anaerobic decay (without free elemental oxygen) of organic constituents contained in solid waste, wastewaters, sludges, or naturally occurring features such as swamps. Methane, frequently referred to as swamp gas or marsh gas, along with carbon dioxide (CO₂) comprise the major constituents (approximately 99%) of landfill gas. Evidence of anaerobic decomposition resulting in methane release can be observed as the bubbling that occurs in a stagnant body of water when the bottom is disturbed thereby releasing the trapped methane gas. Methane gas generation and migration can pose serious health and safety problems. One should understand the characteristics of methane gas in order to appreciate the potential threats it poses. Methane gas is lighter than air and consequently will rise given the opportunity. Methane has a specific gravity of 0.554, based on air having a specific gravity of one (1.0). Methane gas is odorless and colorless and has a flammable range of 5-15% by volume in air. The Lower Explosive Limit (LEL) is thus 5%. Methane as with any fluid will seek the path of least resistance when it flows or migrates. With the non-homogeneous nature of a landfill's contents, predictions as to where methane may migrate are difficult, thus the need to monitor its presence in enclosed areas, confined spaces and at landfill property boundaries. There are documented cases where methane has migrated underground several hundred feet from landfills to adjacent areas and even into basements or crawl spaces of residences. The dangers posed by methane are well known and there are numerous documented incidences of explosions caused by methane. The gas can be trapped in unvented or poorly vented areas such as crawl spaces or even seep into buildings. There is also danger to personnel from asphyxiation upon entering confined spaces where methane may have displaced some of the normal atmospheric air. Of course there are other gases present from the biological decomposition. Many of these gases are organic acids and do have an odor. Carbon monoxide is also likely to be present as it is a product of anaerobic decay. Thus confined space entry procedures should be employed prior to entering such spaces. Confined space entry procedures generally consist of checking the space for the presence of explosive gases, carbon monoxide and oxygen deficiency, venting the confined space, and then entering only if necessary and equipped with life support breathing apparatus, safety lines, and safety personnel standing by. Gas detection meters are commercially available and can be purchased to detect a number of gases or gas categories. The concentration of methane gas (CH₄) at the landfill must be monitored on a regular basis. An approved Permanent Gas Monitoring System must be constructed on or before October 9, 1994. The Temporary Gas Monitoring System must be used until the Permanent Gas Monitoring System is complete. The following requirements pertain to both the Permanent and Temporary Gas Monitoring Systems: # Methane Gas Limits 25% of the LEL of methane in all FACILITY STRUCTURES. 100% of the LEL of methane at the facility PROPERTY BOUNDARY. The LEL (Lower Explosive Limit) is the lowest percent by volume of a mixture of explosive gases in air that will propagate a flame at 25°C and atmospheric pressure. The LEL for methane is 5% by volume in air. #### Monitoring Frequency Gas monitoring shall be performed, at a minimum, every three (3) months unless directed otherwise by DSWM. IF METHANE GAS CONCENTRATIONS ARE FOUND TO BE IN EXCESS OF THE LIMITS¹ listed above, the danger of explosion is high and landfill personnel shall proceed in accordance with the following: - 1. Immediate action must be taken to protect human health from potentially explosive conditions. All persons should be evacuated from the area immediately. - 2. Leave the door to the evacuated structure open for ventilation. - 3. From a safe location, contact the Haywood County Solid Waste Coordinator Keith Burris (704-627-8042) and the Haywood County Emergency Management Coordinator Nolan Palmer (704-452-6660). - 4. Notify the Division of Solid Waste Management (919-733-0692). - 5. Within seven days of detection, place in the operating record the methane gas levels detected and a description of the steps taken to protect human health. - 6. Within 60 days of detection, develop and implement a remediation plan for the methane gas releases, place a copy of the plan in the operating record, and notify the Division of Solid Waste Management that the plan has been implemented. The plan shall describe the nature and extent of the problem and the proposed remedy. ¹This page was revised on July 26, 1994 as required by comments made by DSWM. A response plan was developed for the Landfill Gas Monitoring System proposed for the White Oak Sanitary Landfill in Haywood County. Additionally, the methane detection limits were corrected to correspond with State requirements. The concentration of methane gas (CH₄) at the landfill must be monitored on a regular basis. An approved Permanent Gas Monitoring System must be constructed on or before October 9, 1994. The Temporary Gas Monitoring System must be used until the Permanent Gas Monitoring System is complete. The following requirements pertain to both the Permanent and Temporary Gas Monitoring Systems: # Methane Gas Limits 100% of the LEL of methane in all FACILITY STRUCTURES. 25% of the LEL of methane at the facility PROPERTY BOUNDARY. The LEL (Lower Explosive Limit) is the lowest percent by volume of a mixture of explosive gases in air that will propagate a flame at 25°C and atmospheric pressure. The LEL for methane is 5% by volume in air. # **Monitoring Frequency** Gas monitoring shall be performed, at a minimum, every three (3) months unless directed otherwise by DSWM. #### Permanent Gas Monitoring System #### Narrative: The Permanent Gas Monitoring System is being proposed with the submittal of this Transition Plan to DSWM. This system or the entire Transition Plan must be approved by DSWM before the system can be installed and monitored. The Permanent Gas Monitoring System consists of gas monitoring wells located along the compliance boundary of the facility (refer to the attached plan for well locations) and an outlined procedure for monitoring of the gas wells and on-site structure(s). #### Equipment: - Explosive gas detection meter (meter) capable of measuring the percent of LEL and/or concentration of methane gas (combustible gasses) by volume in air. - Permanently installed gas monitoring wells along the facility's compliance boundary. #### Gas monitoring procedure: - 1. Make arrangements with neighbors to measure gas in nearby structures, if needed. - 2. Calibrate the meter according to the manufacturer's recommendations. Measure the concentration of methane gas in the FACILITY STRUCTURES before any heat source or fuel has been turned on in the structure. Take measurements in the basement or crawl space, near the floor along walls were gas may enter from below, and in every room of the structure. Record, in the Gas Monitoring Record, the concentrations and/or percent of LEL of methane gas for each location. - 3. Measure gas as described in step 2. in nearby structures with owner's approval. Record results. - 4. At each gas monitoring well, remove well cap and insert meter probe into well to approximately two (2) feet into well casing. Perform measurement of concentration or percent of LEL of methane gas in the well. Record measurements. Replace well cap. - 5. Proceed to next monitoring point and repeat steps 4 & 5 until all locations have been monitored and recorded. - 6. Place monitoring results in on-site landfill records. - 7. Submit copy of test results to: Division of Solid Waste Management "Gas Monitoring Results" P.O. Box 2678 Raleigh, NC 27611-7687. 8. If methane gas concentrations are found to be in excess of the established limits, the danger of explosion is high and landfill personnel shall follow the procedure outlined on page 26². ²This page was revised on July 26, 1994 as required by comments made by DSWM. A response plan was developed for the Landfill Gas Monitoring System proposed for the White Oak Sanitary Landfill in Haywood County. Additionally, calibration of the detection
meter was noted. ## Permanent Gas Monitoring System #### Narrative: The Permanent Gas Monitoring System is being proposed with the submittal of this Transition Plan to DSWM. This system or the entire Transition Plan must be approved by DSWM before the system can be installed and monitored. The Permanent Gas Monitoring System consists of gas monitoring wells located along the compliance boundary of the facility (refer to the attached plan for well locations) and an outlined procedure for monitoring of the gas wells and on-site structure(s). #### Equipment: - Explosive gas detection meter (meter) capable of measuring the percent of LEL and/or concentration of methane gas (combustible gasses) by volume in air. - Permanently installed gas monitoring wells near the compliance boundary of the facility. # Gas monitoring procedure: - 1. Using the *meter*, measure the concentration of methane gas in the FACILITY STRUCTURES before any heat source or fuel has been turned on in the structure. Take measurements in basement or crawl space, near the floor along walls where gas may enter from below, and in every room of the structure. Record, in the Gas Monitoring Record, the concentrations and/or percent of LEL of methane gas for each location. - 2. At each gas monitoring well, remove the well cap and insert the meter probe into the well approximately two (2) feet into the well casing. Perform measurement of concentration or percent of LEL of methane gas in the well. Record measurements. Replace the well cap. - Submit copy of test results to: Division of Solid Waste Management Solid Waste Section "Gas Monitoring Results" P.O. Box 26787 Raleigh, NC 27611-7687 # GAS MONITORING WELL NOT TO SCALE ## Temporary Gas Monitoring System #### Narrative: Until approval and installation of the Permanent Gas Monitoring System, landfill personnel will utilize the Temporary Gas Monitoring System as outlined below. The Temporary Gas Monitoring System consists of measuring concentrations of methane gas at the property line and on-site structures. The initial Temporary Landfill Gas Monitoring event for the White Oak Sanitary Landfill is scheduled for April 13, 1994. A report of these readings will be sent to DSWM. ## Equipment: - Explosive gas detection meter (meter) capable of measuring the percent of LEL and/or concentration of methane gas (combustible gasses) by volume in air. - Metal stake with bullet end capable of being driven $2\frac{1}{2}$ to 3 feet into the ground and removed leaving a hole large enough for insertion of the explosion meter probe. ## Gas monitoring procedure: - Calibrate the meter according to the manufacturer's recommendations. Measure the concentration of methane gas in the FACILITY STRUCTURES before any heat source or fuel has been turned on in the structure. Take measurements in the basement or crawl space, near the floor along walls where gas may enter from below, and in every room of the structure. Record, in Gas Monitoring Record, the concentrations and/or percent of LEL of methane gas for each location. - 2. At the monitoring point on the property boundary, drive stake into the ground to a depth of 2½ feet. Remove stake and insert the meter probe. Perform measurement for concentration or percent LEL of methane gas. Record measurement. - 3. Proceed to next monitoring point and repeat steps 1 & 2 until all locations have been monitored and recorded. - 4. Place monitoring results in the on-site landfill records. 5. Submit copy of test results to: Division of Solid Waste Management "Gas Monitoring Results" P.O. Box 26787 Raleigh, NC 27611-7687 If methane gas concentrations are found to be in excess of the established limits, the danger of explosion is high and landfill personnel shall follow the procedure outlined on page 26³. ³This page was revised on July 26, 1994 as required by comments made by DSWM. A response plan was developed for the Landfill Gas Monitoring System proposed for the White Oak Sanitary Landfill in Haywood County. Additionally, calibration of the detection meter was noted. # Temporary Gas Monitoring System #### Narrative: Until approval and installation of the Permanent Gas Monitoring System, landfill personnel will utilize the Temporary Gas Monitoring System as outlined below. The Temporary Gas Monitoring System consists of measuring concentrations of methane gas at the property line and on-site structures. The initial Temporary Landfill Gas Monitoring event for the White Oak Sanitary Landfill is scheduled for April 13, 1994. A report of these readings will be sent to DSWM. #### Equipment: - Explosive gas detection meter (meter) capable of measuring the percent of LEL and/or concentration of methane gas (combustible gasses) by volume in air. - Metal stake with bullet end capable of being driven 2½ to 3 feet into the ground and removed leaving a hole large enough for insertion of the explosion meter probe. #### Gas monitoring procedure: - 1. Using the meter, measure the concentration of methane gas in the FACILITY STRUCTURES before any heat source or fuel has been turned on in the structure. Take measurements in the basement or crawl space, near the floor along walls where gas may enter from below, and in every room of the structure. Record, in Gas Monitoring Record, the concentrations and/or percent of LEL of methane gas for each location. - 2. At the monitoring point on the property boundary, drive stake into the ground to a depth of 2½ feet. Remove stake and insert the meter probe. Perform measurement for concentration or percent LEL of methane gas. Record measurement. - 3. Proceed to next monitoring point and repeat steps 1 & 2 until all locations have been monitored and recorded. - 7. Place monitoring results in the on-site landfill records and send a copy to DSWM. #### 7.11 Air Criteria A gas venting system is required and has been provided in the Approved Plan. The passive gas venting system consists of vertical wells installed progressively throughout the landfill cell and vented to the atmosphere. After construction, the passive system can be converted into a collection/flare system if the need or requirement arises (see paragraph below). At this time monitoring of the gas venting system in the landfill cap is not a requirement. The EPA is expected to promulgate regulations known as Subpart WWW of 40 CFR 60 which will regulate landfill gas as an air pollutant under the Clean Air Act (CAA). Within nine months after promulgation, North Carolina will develop a State Implementation Plan (SIP) which implements the EPA regulations. Landfill owners and operators will be required to ensure that their landfills do not violate any applicable requirements of the North Carolina SIP. Subpart WWW proposes to control landfill emissions by regulating nonmethane organic compounds (NMOC's) in the landfill gas. Landfills emitting more than 167 tons per year of NMOC's would be required to operate gas collection systems and combust the captured landfill gases. In most cases, the new collection systems will be connected to the existing passive gas venting system installed in the landfill cap. In the future, the White Oak Landfill may be required to perform annual testing and calculation of NMOC's emitted from the Passive Gas Venting System. #### 7.12 Access and Safety A locked electronic gate at the entrance to the facility and a perimeter, electrified fence is utilized to prohibit uncontrolled access to the landfill during off hours. Landfill personnel shall monitor the access to the landfill during operating hours. Landfill personnel shall construct and maintain all weather access roads as indicated on the Approved Operational Drawings. Apply water to access road outside of waste cell when needed to control dust. Landfill personnel shall maintain signs at facility which state: hours of operation; no hazardous or liquid waste accepted; the landfill permit number; and other pertinent information. Landfill personnel shall prohibit the removal of solid waste from the landfill unless removal is approved by the landfill operator and is not performed on the working face of the landfill. # 7.13 <u>Erosion and Sediment Control</u> The Erosion and Sediment Control Plan for the White Oak Landfill was submitted to DSWM in March, 1992 as part of the approved White Oak Landfill Construction Plan. Approval of the Erosion and Sediment Control Plan was issued by the Division of Land Resources in July, 1993. A complete copy of the Erosion and Sediment Control Plan Report is provided in the Approved Plan. Refer to the previously submitted and approved White Oak Landfill Design Plans for Erosion and Sediment Control Plan and Details. #### 7.14 Drainage Control and Water Protection Landfill personnel shall ensure that surface water is diverted from the operational area with the utilization of bench ditches, temporary channels, berms, slope drains, culverts, and other means as necessary to maintain positive surface drainage off the landfill. At no time shall surface water be allowed to collect over waste or waste be disposed of in water. Landfill personnel shall utilize slope benches, slope drains, channels, and other methods indicated in the approved Erosion and Sediment Control Plan and the Operational Drawings to control drainage and prevent excessive erosion. The sediment basin shall be maintained to prevent excessive sediment from leaving the property. Surface water shall be monitored as detailed in Chapter 12 - Water Quality Monitoring. ## 7.15 Record Keeping A copy of the following items shall be kept in an Operating Record for the landfill at the MRF until it is closed at which time all records shall be kept at the office of the Haywood County Manager. - Approved Transition Plan including: - Water Quality Monitoring System Plan - Water Quality Sampling and Analysis Plan (SAP) - Hazardous and Liquid Waste Screening Plan - Erosion and Sediment Control Plan - Operational Plan - Closure Plan - Post-Closure Plan - Closure
and Post-Closure Cost Estimate - Financial Assurance Documentation - Annual Updates of Closure and Post-Closure Cost Estimate - Amounts and Sources of Solid Waste Received - Solid Waste Permit and Amendments - Inspection/Evaluation Reports - Water Quality Monitoring Results - Gas Monitoring Results - Hazardous/Liquid Waste Screening Reports - Citizens' Complaints and Disposition - Closed Unit Certifications - Post-Closure Certification - All Correspondence - Other Pertinent Data and Records required by DSWM | Permit Renewal, Landfill Expans | ion | |---------------------------------|-----| |---------------------------------|-----| White Oak Sanitary Landfill # APPENDIX B Calculations of Leachate Pipe Bearing Capacity and Flexible Membrane Liner Slope Stability, Project Design Manual, March 1992 and Addenda to Transition Plan White Oak Sanitary Landfill # APPENDIX B Calculations of Leachate Pipe Bearing Capacity and Flexible Membrane Liner Slope Stability, Project Design Manual, March 1992 and Addenda to Transition Plan | Project | | |
Acct No. | | Page | of | |---------|---------------|---------|--------------|----|------|----| | Subject | <u> SL075</u> | CLBILLY | Comptd. | By | | | | Detail | 11/4 | | Ck d. By | | Date | | # SLOPE STABILITY: STABILITY OF THE SUB SLOPE WAS DETERMINED BY DIMPARING THE MINIMUM FRICTION ANGLE. THE MINIMUM FRICTION HINGLE IS LOCATED BETWEEN THE TEXTURED GO MILL HOPE LINEZ AND THE COMPACTED CLAY BASE LINEZ. SINCE THIS ANGLE IS APPROXIMATELY BY DEGLESS (PER SLT OF NO AMERICA INC) AND IS GREATER THE MAXIMUM STABLE SLOPE ANGLE OF 18 4 DEGLESS (3:1). THE Slope is Lansider (Check. THE FACTOR OF CAPETI IS: TAN 32°/ TAN 34° = 1.88 OBJECT: CALCULATE MACING CAPACTY TOIL TIPE LIVE LIVE LIVE (31) DEFINE ANCIDE TRENCH GEOMETRY. LANG GEOSTITETO DESIGN AND FRICE FOR T= tension =renun can withstand before Failure SURFACE MODIFICATION TO THE FOR S= 350 / P=2 SLT OF No. America inc) 8cs = 120 ibs Iff (Unsoturated) 13 = Side SLOPE AIX- = L = Emosument Length des = depth of soil coses day = depth of ancient trench \$ = 5011 Frien pright between liner and clay S = SOIL / HUPE FRICTION PINGLE Yes = unit st of coler matical KA = coefficient of Active earth pressure Kp = " " Passive " Ko = 1 earth pressure of reil. 13 = 18.4° (3:1) / = 5' des = 2' dAT = 2' Ø = 32 (PEZ SLT DE AMERCE) Ka = tan 2 [(45 - P.2)] = 0.31 Kp = tan 2 [45 + 0/2] = 3.25 K= 1-510 0 = 0.47 9 = (605)(605) = (120)(2) = 240 16/4= | Project Acct No Page of | | |--------------------------------|--| | Subject Subject Comptd By Date | | | Detail Date Date | | # DETERMINE ANCHOR CLOCKT! K= Kp on Ko - TENSION LANDER PARKING SHETH PRESSURE - TENSION WHEN EARTH AT REST.: $$T_{k_0} = \frac{[(240)(5)(7AN35)] + (0.47 + 0.31) \tan 35 [0.5(120)(2) + 20)}{(0.5)(120)(2) + 20}$$ = 1330.59 16/FT. T= 1970.6 16/FT. # DETERMINE LADING -DIEVAT ON LINES: WL = NEWHT OF INER WS = WEIGHT OF SOIL D = DEPTH = 80' t= FML THICKNESS = $\frac{0.06}{12}$ COMIL LINEE - FML SPEC GRAVITY = 0.940 Friction Angle = $S_{L} = 30^{\circ}$ Seno. (PE2 SLT OF NOET -FIFELCE II - LINEZ NT. $$W_{L} = (G_{1} G_{10} \pm). 1. \frac{2}{3} (g_{11}, g_{13})$$ $$= (0.940 \cdot 62.4 \frac{10}{12} \cdot \frac{0.06}{12}) (1. \frac{80}{3} (g_{11}, g_{13}))$$ $$= 74.33 \frac{16}{15} (g_{11} + \frac{0.06}{12}) (1. \frac{80}{3} (g_{11} + g_{12}))$$ - SOIL WEIGHT: $$B_{REA_{5}} = 2 \times 240' = 430 \text{ Sq.} =$$ $S_{5} = 120 \text{ pcf} \quad (unsaturates)$ $W_{5} = 480 \text{ SF} \times 120 \text{ pcf} = 57,600. 16/fg.$: (W5 + W2) Sin 13 = (57,600 + 76.33) SIN .3 = = 18, 204. 35 16/= - FACTOR OF SEFETY = F.S. = $$T + FR$$ = $(1970.6 + 31.595.95)$ $(W_3 + W_L) \sin \beta$ = $(57674.33) 5.0.80$ F.S. = 1.84 (AT WORST CASE SITUATION) For environmental lining solutions...the world comes to SLT. # FrictionFlex Application Data FrictionFlex" is the industry's first textured HDPE liner. It is the only geomembrane to date to be granted a U.S. Patent." FrictionFlex" is the result of over five years of SLT research and development committed to the innovation of new high-performance, geomembrane materials. Offering design and construction advantages for composite litting design on steep slopes, FrictionFlex" provides increased facility design capacity, service life and thereby total revenue potential. Containment slopes, vertical expansions and perimeter slopes in closures share the benefits of greater airspace and superior cover stability. Most importantly, the advantages of FrictionFlex are available without compromise of any performance property or other issue of secure containment. A proprietary manufacturing process enables SLT to produce a textured liner (on one or that sides) exhibiting the same mechanical and chemical properties demanded of SLTs traperFlex, the industry's premium grade smooth HDPE geomembrane. Non-textured entres facilitate welding and thickness measurements for superior quality control. Standard installation equipment and procedures ensure expedient construction. The following reflects independent data confirming superior FrictionFlex* performance in contact with soils and synthetics: - Highest coefficient of friction with soils - Highest coefficient of friction with synthetics - Premium grade mechanical and chemical properties | | SLT Friction | ・ロデ ビャ
iFlex | u 1. L | Typical
Smooth HDPE | | |---|-------------------------------|-------------------|---|---------------------------------|-------| | Material | Coefficient
of
Friction | Adhesion
(psf) | Average
Friction
Angle
(degree _{e)} | Comparable
Friction
Angle | tan e | | Sandy Glacial Till | 0.74 | 27 | 36 | 20 | | | Sandy Clay | 0.70 | . 65 | 35 | 18 | 32 | | Smooth Clay | 0.62 | 39 | _ 32 | 16 | | | Ottawa Sand | 0.59 | 21 | 30. | 19 | | | Nonwoven Polyester
Geotextile | 0.54- | 116 | 28 - | 11 | | | Nonwoven
Polypropylene
Geotextile | 0.65 | 133 | 33 | 12, | Z / | NOTE: The above data is approximate. SLT recommends that specific data be developed for all application designs. Shear box testing of the specific geosymmetic and natural components of the composite is necessary to establish an appropriate design basis. SLT will be pleased to provide any necessary material samples for such purposes and invites comparative procedures. FrictionFlex* material properties are presented on the reverse suite of this document. *U.S. Patent No. 4,885,201 1/4/1 SLT NORTH AMERICA, INC. Subsidiary of SLT Environmental, Inc. Four Greenspoint Plaza 16945 Northchase, Suite 1750 Houston, Texas 77060 (800) 955-8085 (713) 874-2150 FAX (713) 874-2168 سوديمه # FrictionFlex Textured HDPE Lining Material produced from a specially formulated virgin HDPE geomemorane resin FrictionFlex* has outstanding chemical resistance, mechanical properties, environmental stress crack resistance, dimensional stability and thermal aging characteristics. FrictionFlex* contains approximately 975% polymer and 2.5% carbon black, anti-oxidants, heat stabilizers, and contains no additives, fillers and extenders. FrictionFlex* has excellent resistance to UV radiation and is suitable for exposed conditions. | PROPERTY | TEST METHOD | N | OMINAL VALI | JE : | |---|--|--------------------------------|---------------------|---------------------| | Thickness | ASTM 0751/1593/374 | 60mil | : 60mil | 100mil | | Density (g/cc) | ASTM D792/1505 | 0.944 | 0.944 | 0.944 | | Mett Flow Index (a/10 Minutes) | ASTM D1238-E | ≤ 1.0 | ≤ 1.0 | ≤ 1.0 | | Tensile Properties Either Direction | ASTM D638 Type IV
Dumbell, 2 ipm | | | | | Tensile Strength at Break (Ib/in Width)
Tensile Strength at Yield (Ib/in Width) | Gauge length per
N.S.F. Std. 54 | 300
180 | 400
240 | 500
300 | | Elongation at Break (Percent) Elongation at Yield (Percent) Modulus of Elasticity (psi) | • | 800
(1 <u>5</u>)
80,000 | 800
15
80,000 | 800
15
80,000 | | Tear Resistance Initiation (Pounds) | ASTM D1004 Die C | 70 | 94 | 117 | | Low Temperature Brittleness | ASTM D746 B | -120°F | -120°F | -120°F | | Dimensional Stability Percent Each Direction | ASTM D1204
248°F 1 hr. | ±1 | ±1 | =1 | | Volatile Loss (Max. Percent) | ASTM D1203 Meth. A | 0.10 | 0.10 | 0.10 | | Resistance To Soil Burial Tensile Strength at Break or Yield Eloncation at Break or Yield | ASTM D3083
Percent Change
Percent Change | ±5
±10 | ±5
±10 | ±5
±10 | | Ozone Resistance | ASTM 01149 7 days
100 pphm 104°F | No
Cracks | No
Cracks | No
Cracks | | Environmental Stress Crack Resistance (Minimum Hrs.) | ASTM D1693 Cond. C | 5000 | 5000 | 5000 | | Puncture Resistance (Pounds) | FTMS 101C
Method 2065 | 90 | 120 | 160 | | Water Adsorption (Percent Weight Change) | ASTM D570 | 0.0079 | 0.0079 | 0.0079 | | Coef, Linear Thermal Expansion 104/°C | ASTM D696 | 1.2 | 12 | 1.2 | | Moisture Vapor Transmission (g/m²day) | ASTM 596 | 0.001 | 0.0009 | 0.00085 | | Oxidative Induction Time (Minimum Minutes) Compressed O ₂ at 800 psi Pure O ₂ at 1 Atmosphere | ASTM D3895
T30°C
200°C | 2300
100 | 2300
100 | 2300
100 | | Tensile Impact Strength (Ft Lb/in²) | ASTM D1822 | 381 | 381 | 381 | | | | | | | SLT FrictionFlex⁷ is manufactured 32.83 feet wide and up to 900 feet long and is the world's largest monolithic geomembrane lining material. This data is provided for informational purposes only and is not intended as a warranty or guararties. SLT assumes no liability in connection with the use of this data. #### DESIGN CALCULATIONS: - 1. <u>Leachate Piping System:</u> Design of the thickness of the HDPE leachate pipes are based on procedures outlined in the Driscopipe Systems Design Manual. The collection and header pipes were designed for both static and live loadings. - A. <u>Leachate Header
Pipe:</u> The leachate header pipes are placed along the access roads to drain the collection pipes from the fill areas. These 8 inch pipes are buried between 10 and 20 feet in a bedded trench along the edge of the roadbed. A H2O live loading was assumed. - 1) $P_t = P_s + P_l + P_i$ Where: - P, = Total External Pressure - a) P = Static Load Pressure - b) P_L = Dynamic Load Pressure - c) P_i = External Pressure Due to Vacuum - a) $P_s = P_{DE} + P_{WE} + P_B$ Where: $P_{0E} = Moist$ Earth Load Pressure $P_{WE} = Saturated$ Load Pressure $P_{g} = Surface$ Structure Load Pressure P_{DE} : Assume moist earth load =120 $^{lb}/ft^3$ 0.20' depth; $P_{DE} = 120(20) = 2,400$ PSF @ 10' depth; $P_{DE} = 120(10) = 1,200$ PSF P_{WE} : Assume pipe is not below maximum seasonal water table. Thus, $P_{\text{WE}} = 0$ $P_{\rm g}$: Assume pipe is not below permanent surface structure. Thus, $P_{\rm g}$ = 0 ...p_s = 2,400 PSF @ 20' depth or 1,200 PSF @ 10' depth b) P_L = Dynamic Load Pressure -> an H20 loading is assumed $$P_L = \frac{3Wz^3}{2\pi R^5}$$ Where: W = 1.5 times the dynamic load Z = vertical distance from pt. load to the top of pipe R = straight line distance from pt load to top of pipe $$P_{L1} = \frac{3Wz^3}{2\pi R_1^5}$$ $P_{L2} = \frac{3Wz^3}{2\pi R_2^5}$ Where: W = 16,000 lbs x 1.5 = 24,000 lbs. $$R_1 = \sqrt{|x^2+y^2+z^2|} = \sqrt{|0+20^2|}$$ = 20' for inside wheel $$R_2 = \sqrt{|6^2+20^2|} = 20.9$$ ' for outside wheel $$P_{L1} = \frac{3(24,000)(20)^3}{2\pi(20)^2}$$ $P_{L2} = \frac{3(24,000)(20)^3}{2\pi(20.9)^2}$ $$P_{L1} = 28.6 \text{ psf}$$ $P_{L2} = 23.0 \text{ psf}$ $$P_{L} = P_{L1} + P_{L2} = 51.6 \text{ psf @ 20' depth}$$ $$R_1 = 10'$$ $$R_2 = \sqrt{|6^210^2|} = 11.7$$ $$P_{L1} = \frac{3(24,000)(10)^3}{2\pi(10)^3} P_{L2} = \frac{3(24,000)(10)^3}{2\pi(11.7)^5}$$ $$P_{L1} = 114.6 \text{ psf} \qquad P_{L2} = 52.3 \text{ psf}$$ $$P_{L} = 166.9 \text{ psf @ 10' depth}$$ Thus, $$P_t = P_s + P_l + P_i$$ @ 20' depth: $P_t = 2,400 + 51.6$ = 2,451.6 psf $0 = 10' \text{ depth: } P_t = 1,200 + 166.9 = 1,366.9$ Worst case is @ 20' depth: 2) Design for Wall Crushing $$S_A = \frac{(SDR-1)}{2} P_{\tau}$$ Where: S^A = Actual compressive stress SDR = Standard dimension ratio P_t = External pressure Try SDR21: $$S_A = \frac{(21-1)}{2}_{17.0} = 170 \text{ psi}$$ Safety factor = $\frac{1500 \text{ psi}}{S_A}$ Where 1500 psi is compressive yield strength of Driscopipe S.F. = $$\frac{1500}{170}$$ = 8.8 OK 3) Design for Wall Buckling $$P_c = \frac{2.32 \text{ E}}{(SDR)^3}$$ Where: P_c = Hydrostatic, critical collapse differential pressure E = Tensile modulus of elasticity From Chart 25 pg 53 @ S_A = 170 psi, E = 30,000 psi @ 170 psi or 50 years @ 73.4°F $$P_c = \frac{2.32(30,000)}{(21)^3} = 7.5 \text{ psi}$$ $$P_{cb} = 0.8 \sqrt{|E'xP_c|}$$ Where: $P_{cb} = Critical buckling pressure$ E' = Soil Modulus tion bearing the section Assume $$E'_{min} = 1,000 \text{ psi}$$ $$P_{cb} = 0.8 \setminus 1000 \times 8 = 71.6 \text{ psi}$$ Safety Factory = $\frac{P_{cb}}{P_{c}} = \frac{71.6}{17.0} = 4.2 \text{ OK}$ Design for Ring Deflection 4) Pipe deflection equals soil strain, Es $$E_s = \frac{P_t}{E_{min}^T} \times 100\% = \frac{17.0}{1000} \times 100$$ = 1.7% From Chart 27, page 55 allowable ring deflection for SDR21 equals 5.2%. 1.1 Thus, Safety factor = $\frac{5.2}{1.7}$ = 3.1 OK 1.7 Thus, use SDR21 for Leachate Header Pipes - Leachate Collection Pipes: The collection pipes В. are placed in the center of each lined cell. The 8-inch perforated pipe will be surrounded by 6 inches of #57 gravel. Twelve inches of sand will be placed over this prior to the placement of waste. A H2O live loading was assumed. - $P_{t} = P_{s} + P_{t} + P_{t}$ 1) Where: P = total external pressure - Ps = Static load pressure - P_i = Dynamic load pressure P_i = External Pressure due to vacuum - $P_s = P_{DE} + P_{WE} + P_{SW}$ a) Where: $P_{0E} = Moist$ earth load pressure P_{WE}^{UC} = Saturated earth load pressure P_{SW} = Waste load pressure For an empty cell: -> assume sand is saturated $(132^{lb/}ft^3)$ and gravel's unit weight is $(120^{lb/}ft^3)$ $P_{DE} = 0.5!(120^{lb/}ft^3) + 1.0!(132^{lb/}ft^3)$ = 192 psf For a full cell: Unit weight of saturated garbage is $70^{lb/} ft^3$ $P_s = P_{sempty} + P_{sW}$ = 192 + 70'(70'b/ft³) = 5,092 psf b) P_L = Dynamic Load Pressure-> and H2O loading is assumed $$P_L = \frac{3WZ^3}{2\pi R^3}$$ Where: W = 1.5 times the dynamic load Z = vertical distance from pt. load to the top of pipe R = straight line distance from pt. load to top of pipe This er er degrate. For empty cell: W = 24,000 lbs. Z = 1.5 $R_1 = 1.5$ ' for inside wheel $$R_2 = \sqrt{|x^2+y^2+z^2|}$$ $R_2 = \sqrt{|6^2+1.5^2|} = 6.2$ ' for outside wheel $P_{L1} = \frac{3(24,000)(1.5)^3}{2\pi(1.5)^5}$ $P_{L2} = \frac{3(24,000)(1.5)^3}{2\pi(6.2)^5}$ $$P_{L1} = 5,093.0 \text{ psf}$$ $P_{L2} = 4.2 \text{ psf}$ $P_{L} = P_{L1} + P_{L2} = 5,097.2 \text{ psf}$ c) P_i = external pressure due to vacuum = 0 Thus, $P_t = P_s + P_L + P_i$ for an empty cell: $P_r = 192 + 5,097.2 + 0 = 5,289.2$ psf For a full cell: $$P_{*} = 5,092 psf$$ Worst case is a empty cell: . . $P_t = 5,289.2 \text{ psf or } 36.7 \text{ psi}$ 2) Design for Wall Crushing $$S_A = (SDR-1) P_t$$ Where: S^A = Actual compressive stress SDR = Standard dimension ratio P_r = External pressure Try SDR21: $$S_A = \frac{(21-1)}{2}_{36.7} = 367 \text{ psi}$$ Safety factor = $$\frac{1500 \text{ psi}}{S_A}$$ Where 1500 psi is compressive yield strength of Driscopipe S.F. = $$\frac{1500}{367}$$ = 4.1 OK 3) Design for Wall Buckling $$P_c = \frac{2.32 E}{(SDR)^3}$$ Where: P_c = Hydrostatic, critical collapse differential pressure E = Tensile modulus of elasticity From Chart 25 page 53 @ $S_A = 367$ psi, E = 22,500 psi @ 367 psi for 50 years @ 73.4°F $$P_c = \frac{2.32(22,500)}{(21)^3} = 5.6 \text{ psi}$$ $$P_{cb} = 0.8 \setminus | E^{\dagger} \times P_{c}$$ Where: P_{cb} = Critical Buckling Pressure E^{+} = Soil Modulus Assume E'_{min} = 2000 psi $$P_{cb} = 0.8 \ | \ 2000 \times 5.6$$ = 84.7 psi Safety Factory = $\frac{P_{cb}}{P_{t}}$ = $\frac{84.7}{36.7}$ = 2.3 OK (4) Design for Ring Deflection Pipe deflection is equal to soil strain, E_s $$E_s = \frac{p}{E!} \times 100\% = \frac{36.7}{2000} \times 100$$ = 1.8% From Chart 27, Page 55 -> Allowable ring deflection for SDR21 is equal to 5.2% Thus, Safety Factor = $\frac{5.2}{1.8}$ = 2.9 OK 1.8 ... use SDR21 for Leachate Collection Pipes | PROJECT NAME | HAywood | County | - Nhik | DAKLANDFILL | |--------------|---------|--------|--------|-------------| | | | | | | | PROJECT NO | 920520 | SHEET 5 OF | |------------|--------|-------------| | BY | NED | DATE 6/8/42 | | | | | | WIN | ISTON-SALEM RALEIGH CHAI | RLOTTE | | | | |-------------|--------------------------|---|---
--|--| | | | | | | | | BJECTIVE: | STABILITY OF | SOIL COVER = | VERIFY THAT | SOIL COVER WILL | ANT SUDE | | | ON FML. A | SO VENIEN F | home Consi | by and STRESS (| ed Edl | | | Provide all use | 0 | 1101010 CONT | 7 3110 1120 0 | | | | hoee, will use | Productive M | LE METHOW. X | ETERMINE LIMIT | OF FILL. | | | | | | | | | MATERIAL PA | COPECTIES: | | | | | | - ! | | 1 | | | | | | ID : | PAIXSE | TEST | STANDARD | | | | SOIL COTER- | | | | | | | FML FLICTION, | 10-200 | DIRECT SHEAR | ASTM | | | | 24 | | • | | | | | FW 110 - 1: | | | | | | | FML-LCR Friction SL | B°- 15° | II | | | | <u></u> | | | | | | | | - YIELD Stress, | 1000 0000 | | | | | | FML, Gy | 1000 - 1200 ps | TEHON | 745TM D638 | | | Given: | 2'0" | 3 | Yc =
Wc = | VOWME = 38' x 2
Weight : 76 x | 150165/FT2 = 11,400 165 | | Given: | 2'0" | 3 X I LIFT | Yc =
Wc = | VOWME = 38' x 2
Weight : 76 x | 2' = 76,0 =T2- | | Given: | | 3 * 1 LIFT | Yc =
Wc = | VOWME = 38' x 2
Weight : 76 x | 150165/FT2 = 11.400 165
150165/FT2 = 11.400 165
60FT2 67.6 165/FT2 = 51.38 16 | | Given: | 2'-0" | 3 * I LIFT | Yc =
Wc = | VOLUME = 38' X 2
WEIGHT : 740 X
= Effective WT = "7 | 150165/FT2 = 11,400 165
150165/FT2 = 11,400 165
60FT2 67.0 165/FT2 = 5138/6 | | Biven: | | | - Yc = Wc = = 38' WEFF | VOWME = 38' x 2
Weight : 76 x | 150165/FT = 11,400 160
150165/FT = 11,400 160
160FT x 67.6 165/FT = 5138 16
160 = 60 EUPT 15
160 EUPT 15 | | Siven: | | 3 + 1 LIFT | - Yc = Wc = = 38' WEFF | VOLUME = 38' X 2
WEIGHT : 740 X
= Effective WT = "7 | 150165/FT2 = 11,400 165
150165/FT2 = 11,400 165
60FT2 67.0 165/FT2 = 5138/6 | | 3iven: | | | - Yc = Wc = = 38' WEFF | VOLUME = 38' X 2
WEIGHT : 740 X
= Effective WT = "7 | 150165/FT = 11,400 160
150165/FT = 11,400 160
160FT x 67.6 165/FT = 5138 16
160 = 60 EUPT 15
160 EUPT 15 | | Biven: | FML | 10.4 | Yc = \(\forall c = \) \(\forall c = \) \(\forall c = \) \(\forall c = \) \(\forall \forall \forall c = \) \(\ | VOLUME = 38' X 2
WEIGHT : 740 X
= Effective WT = "7 | 150165/FT = 11,400 160
150165/FT = 11,400 160
160FT x 67.6 165/FT = 5138 16
160 = 60 EUPT 15
160 EUPT 15 | | Given: | | 10.4 | Yc = \(\forall c = \) \(\forall c = \) \(\forall c = \) \(\forall c = \) \(\forall \forall \forall c = \) \(\ | VOLUME = 38' X 2
WEIGHT : 740 X
= Effective WT = "7 | 150165/FT = 11,400 160
150165/FT = 11,400 160
160FT x 67.6 165/FT = 5138 16
160TE ONELIFT 15
160TE EQUAL TO 12'1 | | Biven: | COVER SOIL: | 16.4 | Y _C =
W _C =
= 38' | VOLUME = 38' X 2 WEIGHT = 740 X = EFFECTIVE WT. = "TA | 150165/FT = 11.400 160
150165/FT = 11.400 160
160FT x 67.6 165/FT = 51.38 16
160 E COPEL FOR 15
HEGOT. | | Given: | COVER SOIL: | 10.4 | Y _C =
W _C =
= 38' | VOLUME = 38' X 2 WEIGHT = 740 X = EFFECTIVE WT = "TA - PROTECTIVE DEAINA | 150165/FT = 11,400 160
150165/FT = 11,400 160
160FT x 67.6 165/FT = 5138 16
160TE ONELIFT 15
160TE EQUAL TO 12'1 | | Given: | COVER SOIL: | 16.4 | Y _C =
W _C =
= 38' | VOLUME = 38' X 2 WEIGHT = 740 X = EFFECTIVE WT = "TA - PROTECTIVE DEAINA | 150165/FT = 11,400 160 150165/FT = 11,400 160 160FT x 67.6 165/FT = 5138 16 160FT x 67.6 165/FT = 5138 16 160FT x 67.6 160FT 15 | | Given: | COVER SOIL: | 16:41
Y _{SAT} = 150 pcs | Y _C = \(\forall c = | VOLUME = 38' X 2 WEIGHT = 740 X = EFFECTIVE WT = 17 | 150165/FT = 11,400 160 150165/FT = 11,400 160 160FT x 67.6 165/FT = 5138 16 160FT x 67.6 165/FT = 5138 16 160FT x 67.6 160FT 15 | | Given: | COVER SOIL: | 16.4 - 150 per | Y _C = \(\forall c = | VOLUME = 38' X 2 WEIGHT = 740 X = EFFECTIVE WT = 17 - PROTECTIVE DEAINH - TROTECTIVE DEAI | 150165/FT = 11.400 160 150165/FT = 11.400 160 160FT x 67.6 165/FT = 51.38 16 16 160FT x 67.6 16 160FT x 67.6 16 160FT x 67.6 16 160FT x 67 | | Given: | COVER SOIL: | 16.41
Y = 150 per
11 Bajo:
S= 30 | Y _C = \(\forall c = | VOLUME = 38' X 2 WEIGHT = 740 X = EFFECTIVE WT = 17 - PROTECTIVE DEAINH - TROTECTIVE DEAI | 150165/FT = 11,400 160 150165/FT = 11,400 160 160FT x 67.6 165/FT = 5138 16 | | Given: | COVER SOIL: | 16.4 150 PCF TL BOJO: CR BOJO: | Y _C = \(\forall c = \forall c \forall c = | VOLUME = 38 x 2 WEIGHT = 7LO X = EFFECTIVE WT = 17/1 - PROTECTIVE DRAINH | 150165/FT = 11,400 160 150165/FT = 11,400 160 160FT x 67.6 165/FT = 5138 16 | | Given: | COVER SOIL: | 16.41
Y = 150 per
11 Bajo:
S= 30 | Y _C = \(\forall c = \forall c \forall c = | VOLUME = 38 x 2 WEIGHT = 7LO X = EFFECTIVE WT = 17/1 - PROTECTIVE DRAINH | 150165/FT = 11.400 160 150165/FT = 11.400 160 160FT x 67.6 165/FT = 51.38 16 16 160FT x 67.6 16 160FT x 67.6 16 160FT x 67.6 16 160FT x 67 | PROJECT NAME HAYWOOD COW, - WHITE DAIL LANDFILL PROJECT NO. 92052.0 SHEET 6 OF BY DATE 6/8/92 | BY | NEO | DATE 6/8/92 | |------------|-----|-------------| | CHECKED BY | | DATE | | | WINSTON-SALEM RALEIGH CHARLOTTE | CHECKED BY DATE | |-------------|------------------------------------|--| | GTOP | BLITY OF SOIL COVER (CONTO.) | | | | | | | | · SOLVE NEUTRAL BLOCK FORCE POLYGI | ω); | | | | | | | | WIND = VNR Ypoin Where Vn8 = 1/2 2.6 = 6FT2 | | > | | | | | /B4° - Nus | = 60 x 67.6 | | | /18> | = 406 165/ | | | | | | | / | FOB = 135 165 (DRY CONDITIONS) :: UNE | | | Fue | | | | | FINE = 260 lbs (SATURATED CONVITION) | | | | | | | | | | | · SOLVE FOR SCIDING STABILITY: | (SATURATED CON DITIONS, Worst Case) | | | | | | | | Fy = 5138 + cos 184° + Tan. 30° | | | | = 28.14.77 i. 28.15 lbs. | | | F. | | | | * // | Fs = 76FT2 * 624 * SN 184 | | | | | | : | Fub | | | | وه، اله | | | _ | | = Fm+ Fue = 2815+135 = 197 ΜΑΡΙΘΗΡΑ | | | | Fs 11497 | | <u> </u> | | | | | | | | | | | | | · CALCULATIONS REPRESENT A MAR | 24 MAL SCRETT FACTOR FOR STABILITY OF THE SIDESLARES | | | UNDER SATURATED CONDITIONS. | Much cre must be taken in the day to day | | 1 1
| operations to ensure slipe state | villey. A Nonsusven filter fabric will be laid | | | on the probative cover | to direct is busyment away from the protection | | | | in crossing control. If diving a story examt, | | | slicking dos occur the opera | to must natify the field inspects for the Discum, | | 1 1 | | | | PROJECT NAME | Doowrah | County | ٠ | White | OALL MOGUL | | |--------------|---------|--------|---|-------|------------|--| | | | • | | | | | | - | | | | | | | | PROJECT NO. | 920520 | SHEETOF | |-------------|--------|--------------| | BY | NEO | DATE 6/16/92 | | CHECKED BY | | DATE | | N. S. | WINSTON-SALEM RALEIGH CHARLOTTE | | 1 | CHECKED B | Υ | | DATE | | |-------------|--------------------------------------|--------------|------------|---------------------------------------|----------|---------------------------------------|-------------|--------| | 10 g | Stability of the Soil Cover (CONTO.) | | | | | | | | | | | | | | | | | | | \$ | · Solve FOR MEMBRANE TENSION: | | | | | | | | | | Fin | , | | | | | | | | 7 | | | FL= | 11.400 | x Cos 19 | 3.4° × TA | N 28° | 1 1 . | | | FM | ; | ! | | | | i i | | | | FL | : | FM | 5138 | x 05-18 | 54° X TA | N. 30° | | | | | 1 | 1 : | | 1 ; | 1 | | : | | | | 1 | T= | Fm - | - FL · | | | : : : | | ş. | | | | | <u> </u> | | | | | | | · | - | 2810 | 5 - 5752 | | | | | 十 | | - | | | 1 1 1 | | | | | | | : | | -11021 | 165. | | <u>:</u> : | | | + | | | : ' | - <i>P</i> [7] | 105. | | | 1 | | + | | : | . 77 | | | | | | | | | · | Bu | 17 + 1 . 4 | ANNOT BE | COMPLESSI | ve | 1=0 | | + | | | | 1 1 | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | . : : | PAD (| GPML O | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | - | · VERIFY Anchor Copacity: | | | <u> </u> | | | | | | - | | : | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | + | | - | <u>i :</u> | | | | | | | + | SINCE T = 0 Ancho | v is | NOT | STRES | BED. | | | | | + | | - | ! ! | | <u> </u> | | <u> </u> | | | +- | (RF: carcs previous, Sub | mith | 46 | 57475 | FOR | <u> </u> | | | | | Anabe Trency Design | <u>'.)</u> | | | | | | | | - | | <u>:</u> | | | | | - ! : | | | + | | | | | | | | | | \bot | | <u> </u> | | | | | | | | 4_ | | | | | | <u> </u> | | | | 1 | | | | | | | | | | | | <u> </u> | | | | | | | | t t | | ! | 1 1 | 1 | i : | | , , | | | D 200 | 34 | PROJECT NAME HOW WOOD COUN | 174 - White OAK LANDFILL | |----------------------|--|----------------------------|--| | | | PROJECT NO. 92052.0 | SHEET_ / OF_ | | DESIGN | GROUP | BYNO | DATE 6/8/92 | | Winston-Salem Ral | EIGH CHARLOTTE | CHECKED BY | DATE | | \$ | | | | | OB ECTIVE: TENSI | | | | | | E STRESS - DOWNDRAG DU | PLAG FILLING SEQUENCE; | | | | OPERATIONS PEOURE 5:1 | BALE PLACEMENT RATION | | | | therefore calculate FML STE | LESS GENERATED DURING | | | | MALEMENT OF BALES ADJA | CENT TO SIDEWALLS OF | | | | FACILITY (Assume BALE Dime | insim = 4x5'x3) | | | 2 | | | A ASSUME WT OF BALE | | | | | 15 1400 165 /C.Y. | | GNEN: PLCR | | | 120103729. | | | , , , , , , , , , , , , , , , , , , , | | | | | Wo | | 35 (3 BALES) - h · 12 FJ | | 3 | | • LLUIT/WT: } | | | | 0 0 0 | D - WASTE | (BALE): 3000 lbs / bonce | | WMIL_ | | | DIL: 150 165/0F | | FML / | | · · | E: $\beta = 18.4^{\circ}$ (5:1) | | 24" CLAY /
E 16-7 | J. Y | · Friction Any | | | £ 10' | | | o PFML = Fu = 30° # | | | | | | | (+ FF: 4 | SLT OF No. Arreica, INC Friction Flox | · · | SUZE - FL = 28° | | Apoli | cation Date ATTACHED.) | _ | fured HDPE FAIL | | | | ON SIDESLO | PES. | | (1) | | | | | II) CACCULATE | E DOWN DRAG FORCE ON FML | | - 36 | | WHER | | a're' | 27 | | | Fu = W (COS B) (TANSU |) | B 3 6 | | | FL = W (COS B) (TAN SL) | 8: 501 B. B. B. | 5 8 3 | | | | - W= W7542 -4 | 1 UT 8 5 3 6 8 B | | | | 4 | U-GEOMETRY | | | Fu = 6,975 + cos 184 * tan | | .5 (9.3) x3 + 150 165/ | | | = 3821.14 3821 16 | | | | | 7041.19 7041 TOS | IFT. | 27 | | | El - com | = 22 | 5 165./
F110 | | | FL = 6975 × Cos 18.4° × TA | N.28 | <u> </u> | | | = 3519.07 -: 3519.165/ | T WTBaces | 9 BALES x (3000 165/cx) | | | | | 457 / | | | | = 0 | 750 16s | | | T = 3821 - 3519 | | 3 Flw | | | | | | | | = 202 165/ET. | | | | | 2 1 1 1 1 1 | VI 3 10975 | T5-7- | | PROJECT NAME | HAYWOOD COUN | TV - White OAK LANDFILL | |--------------|--------------|-------------------------| | PROJECT NO | 92052.0 | SHEET2OF | | BY | NED | DATE 6/8/92 | | CHECKED BY | | DATE | | <u> </u> | 7 | ريدا | = | لہے | اسر دا | اء ا | 7 | Jr | 20 6 | | น้อเม่ | 4 15 | | 6 | CON | שלים. |): | i | į | į | : | | | İ | | | |------------|----------|----------|----------|----------|----------|------------------|-------------|---------------------|---------|------------|-------------|------------------|----------------|--|---|-------------|-------------|--------------|--------------|---------------------------------------|------|----------------|-------------|-----------------|-------------|----------------------| | - | | 715~ | | - 1 | | <u>- رر</u>
ا | <u> </u> | <u> </u> | 1 | 1 - 1 - 2 | | -1 • ! | | -1 . \ | 1 | | - | | | | İ | | | | | | | - | | | | (1) | /.DI | د 11 رم | TE. | File | TE | NS/LE | = 5T | rece | , | <u>.</u> رئيم | T | | T | | 1 | | | | | | | 1 | | \dashv | | | | <i></i> | J. | | | 1 | <u></u> | | | | | | | | | | . ! | | | | | | | 1 | | ᅴ | | | | | | | | <u>,</u> | 7, | 1+ | | Vel | here | £ = | F | 72 | THIC | INE: | 55 | 1 | i | | | | į. | <u> </u> | | - | | | | | | | - | i | | <u> </u> | | | | - | I
i | | | | : | | İ | | ·: | : | : | | | | | | | | \vdash | | 6 | - | 30 | 2 16 | 5/=1 | , | IFI | . , | | 1 | | | | | : | | ! | <u> </u> | <u> </u> | ! | | | | | | - | | | i | | | 060 | | - X - | 12m | | | | : | | · · | | : | <u> </u> | | <u>:</u> | | ! | | | | | | | | 1 | | 1 | | | | | | İ | | | İ | i | | ! | | | <u> </u> | - | ! | ! | | | | | | | | | | = | .41 | 9. 7 | 165 | 1_2 | - | <u>. </u> | 420 | 16 | 2/- | 2 | | | | | | - | | | | | | | | | | | | | i | | | | | | İ | | ,,,, | · | i . | | | : | ! | | | ! | | | | | | (3.) | 637 | AIN | F | 41 | YIEL | D 5 | 78ES | . ک | GY. | : | i | <u>:</u> | | | | : | : | ! | | | | - | | | | | | | | | | | i | | į | | · · · | : | | | | | | .: | | | | <u>:</u> | : | | | | | | | | | -PE | e_ | تح | , M2 | 274 | AME | ZICA | <u> ۱۱۷۷</u> | <u>:</u> _ | !
! | | | | | | | | | | | | | | | | | | | | | | | | | | :
i | <u>!</u> | | <u> </u> | • | <u>:</u> | | | i | : | : | : | | | | | | ļ | | | | | • | 60 | mil te | xtue | d Fm | IL T | ĘŅŊ | .E.S | TRE | <u> </u> | ey | ELD | = 1 | <u>80 il</u> | bs/i | 7, W | .dH | <u>h</u> | | | | | | | | | İ | | - | ! | 1 | | | | <u> </u> | : | ! | ! | ·
 | | | : | | | <u>-</u> : | | | | | | | | İ | | | 1, '. | | ~_
Σ <u>γ</u> _: | = | 180 | 165/ | <u>in</u> | · - | | <u>' ^</u> | : | | | | · · | | | | | | | | | İ | ! | | 1_ | | ! | | -1 | | | ۱۵۵۱۸ | | | 1.5 | =_ | | | | <u></u> | | | | | <u>.</u> | | | | | | | <u> </u> | - | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | | | | | | | : | | - | | | | | <u>:</u> _ | | | : | | | | | <u> </u> | | | | - | <u> </u> | = 1 | <u>200</u> | ا م | PS / | F-2 | . ! | | • | : | | : | | : | | | | | <u> </u> | | _ | <u> </u> | | 1 | | - | <u> </u> | - | | | | | - | | <u> </u> | | - ; | <u> </u> | | : | | | _ | <u>;</u> | - | <u>-</u> - | 1 . | | _ | | | | _ | - | - | 1 | ! | | | | | 1 i | | <u> </u> | | | | : | : : : : : : : : : : : : : : : : : : : | ; | 1 | <u>.</u> | | <u> </u> | | | | | - | - | (4) |) C1 | <u>مركب</u> | LATE | 1 | الحال | NA | 24710 | (55 | CY | ACTO | x): | _(0 | 2 7 | 5.0 | (2) | ieud) | : | <u> </u> | : | | : | | | _ | | | | <u> </u> | _ | <u> </u> | - | | | 1 | | | <u> </u> | <u> </u> | | | | | | : 1 | : | <u> </u> | | <u></u> - | | | | _ | + | + | - | | | | - | i b. | R = | . ! (| 51/s | <u>-</u> | · | ! | | | ! | | _; | : - | | | i | - <u>!</u> | | <u> </u> | | _ | _ | 1 | - | _ | | - | - | <u> </u> | | | | | | 1 | | | | <u> </u> | : | <u>!</u> | | · | | | | | | - | - | | + | - | | | +- | 1. | 1 : | = 2 | 6,00 | | |
 | | - 1 | | | <u> </u> | + | | | \dashv | _ | <u></u> | <u> </u> | | _ | - | | + | + | <u> </u> | - | - | +- | | <u> </u> | 420 | 2 16/ | F72 | | | 1. | | <u>:</u>
 | $\dot{\top}$ | | | - | . | $- \frac{1}{1}$ | 1 | - : - : : | | - | - | | - | | - | | - | + | 1 - | | 0 | | 100= | : | | | | | <u> </u> | | | | <u> </u> | - | • | | | - | - | | - | - | + | - | - - | - | | = | 85.7 | | 88 | | 0 | <u> </u> | | <u> </u> | | | | | | | | | | - | + | _ | + | \dashv | + | _ | <u> </u> | | - | | | + | | - | | | <u>'</u> | | <u> </u> | - | +-1 | | | | Ī | 1 | | - | + | | + | \dashv | + | | | \dashv | - | | - | | | <u> </u> | <u>i </u> | | | | + | \top | 1 1 | | | | | | | - | + | - | + | - | | + | - | | | | | + | | | | | | | | - | | | | | | | | - | \perp | \dashv | + | | \dashv | \dashv | + | + | - | ! | | | | : | | ! | | <u> </u> | | | | | | | İ | | | - | - | \dashv | + | + | _ | | - | | + | - | | | | | - | | | | | - | Ī | | | | ; | | | PROJECT NAME | Haywood Cou | UTY - While Opk | |--------------|-------------|-----------------| | | LANDFILL | | | PROJECT NO | 92052.00 | SHEET OF | | BY | NED | DATE 6/23/42 | | CHECKED BY | | DATE | | | PACEION CHANDITE | | | | |------------------|------------------------|-------------------|-----------------|-----------------------| | | | | | | | OBJECTIVE: VEMEY | USE OF FILTER FABRIC | / SOIL COVER | FOR REFENTING! | PERMEABILITY, | | | 4 AND SURVIVEABILITY | | | | | | | |
 | | | | | | | | GIVEN: | | | | | | | 1.10416 | | | | | 00 | MASTE 3 5 | | 105. | | | | 5015 | | (14.: | PARTICLE SIZE DIST. 1 | | 2 | B. de DASHED | FILTURATION -GENE | £7116 | PHYS. PROP. TESTS BY | | 1.5 | | STONE - GEOTEX | | LAW ENG.) | | | FMCJ | | 7,68 | | | | | | | | | | 50:2 \$1 (6-103) | | SOIL # 2_ (B-11 | 3) | | | | | | | | | 0-8 mm | D85 | 1.8 mm | | | | | | | | | | 8.28 mm | P60 | 0.30 mm | | | | | | | | | | (0.025 mm | D ₁₅ | * 0.028 | | | (* approximated) | | | 2 0.028 mm | | | | *-0.015,mm | | * | | | | 0, 9, 3, m/n | D ₁₀ | 0.010 mm. | | | | -4 | | | | | | 2.3 x 10 ⁻⁴ | KAG | 4.4 × 10-5 | | | | | | | | | | 18.67 | Cy (020/010) | 3.0 | | | | | | | | | | | | | | | 1) OBTAIN A | A05 For GESTELTILE: | (PF GUNDLE PO | ועידנד) | | | | | | | | | | AOS = Apparent Openi | SIZE = 095 | | | | | | | | | | | GIVEN AS > 140 SIE | SUE 4010 | | | | | | | 700 | | | | | ++++ | | ++++ | | | | ++++ | | | | | | ++++ | | | | | | ++++ | | | | | | 1 1 1 1 1 | · | | | PROJECT NAME | HAYWOOD COUNTY - White DAK | | | | | | | | |--------------|----------------------------|--------------|--|--|--|--|--|--| | | LANDPILL | | | | | | | | | PROJECT NO | 92052.00 | SHEETOF | | | | | | | | BY | NEO | DATE 6/23/92 | | | | | | | | CHECKED BY | | DATE | | | | | | | | | | | | SM N | | · OIL | 100111 | - |--|--------------|----------|------|----------|--|-----------------|----------|---|--------------|---|--------------|--|--|---------------|-------------------|-----------|---------------|--|--|----------|--------|----------|--------------|--|--|---|---------------|---------------| | | | | | | ļ | | i | : | ; | - | | | İ | 1 | ! | i | į | | • | | i | į | i | i
 | ļ | | : | | | | | | | | | | | | - | | | İ | | | | | | | | | | | | | | | | | | | 3.) | PEZ | mE | D 61 | riL | 1 | Zeau | 125 | MEA | 275: | | | İ | | | | Ī | Ī | Ì | 1 | | | | | | | | | | | 1 | | | ł | 1 1 | 1 | ì | : | i | 1 | 1 | | 1 | 1 | رد ہے | į | | | <u></u> | | | | | İ | | | | | | | | | | | | | | | | | ا | | | | | | | İ: | İ | | | | | | | | | | | | 1 | | | | Ksi | okx | 11 | _ ≥ | } | 10 | v | 1 | 1, | Ì | | | İ | <u> </u> | | | | | | <u> </u> | İ | | i | | | | i | | | | | | | : | | Ī | Í | <u> </u> | 0// | <u> </u> | | | - | <u> </u> | <u>:</u>
! | | | | | | İ | | ; | | | | İ | | | | | Kse. | <u> </u> | , | 10 | t | <u> </u> | <u> </u> | 10- | L | | | <u> </u> | | | | ! | | | <u>:</u>
i | <u>!</u> | i | | | | | | | | | <u>. </u> | <u>عر:</u>
ا | | <u> </u> | | <u> </u> | 6 | 1 | 1 | | | | | | - | (+; | 7.5 | | 11 | 0.1 | GIL | | | | | | 1 | | | | | 4520 | | >. | 2 | 3 × | 10 | -3 | - | | | | | †
† | İ | | 1 | | ! | DA76 | 1. | | | | | | ! | | | | | <u>ڪر ح</u> د | <u> </u> | <u>- </u> | 1 | | | ! | ! | - | | <u> </u> | <u>!</u>
[| <u>:</u> | | <u> </u> | | معا | 1970 | 1 | | | 1 | | | | | . ! | | | V | : | | * . | - | | <u> </u> | ! | <u> </u> | <u> </u> | <u> </u> | | cm, | / | | | | | <u> </u>
 | <u> </u>
 | <u>! </u> | | <u>i</u>
; | | | | | | | 1 | <u>cse</u> | <u> </u> | | 0.3 | 15 | cm, | 15.2 | <u></u> | 1- | 0. | 000 | : > | cm, | /5E | <u>د</u> | | | 0K
5 | | - | <u> </u> | | <u></u> | | | | | | | <u> </u> | | : | ! | | ! | 1 | <u>i</u> | | i | <u>!</u>
! | 1 | | | | ! | i | | <u>'</u> | ! | <u>.</u> | <u> </u> | | : | | | | 1,\ | | | | | | | | <u> </u> | <u>:</u> | <u>:</u>
 | ! | ! | 1 | | | : | ! | <u>i </u> | • | | | | <u>;</u> | <u> </u> | | | | | | 4.) | _CL | 066 | الكلا | _E | Vau | ATU | <u>: 4ه</u> | | 1 | ! | ! | ! | 1 | | | ! | ·
[| <u> </u> | | | | <u>.</u> | ! | | | : | | | | | <u> </u> | | _ | | | | | : | : | <u> </u> | 1 | <u>!</u> | <u> </u> | 1 | : | <u>!</u>
: | ! | : | i
: | | | !
 | <u>!</u>
: | <u> </u> | | | | | | : : | | | Di | <u> </u> | RIMIA | JE. | MIA | JiMi | Lear | Poe | E | Sze | 120 | <u> </u> | : | : | : | : | | | ! | ! | <u>!</u>
: | - | | : | | | | <u>.</u> | | : | | | | | | | !
:< | ! | : | <u>i</u> | | 1 | | : | | | | | | 1 | <u>;</u> | <u> </u>
: | !!! | | | | | | | | | | <u> </u> | 95- | HO. | <u> </u> | <u> </u> | : 2 | <u> </u> | D, | 5 | : | | <u>:</u> | <u> </u> | : | | :
i | | | <u> </u> | | <u> </u> | : | - | | | : : | | | | | ! | | | <u> </u> | <u>i</u> | 1 | | 1 | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | | | | | <u> </u> | ! | | | | | | | | | | | | | | <u> </u> | <u>></u> | 3 | X | 0.0 | 115 | = | | 0.0 | 45 | mm | | - | | | <u>'</u>
 | | | | | | | | | | | | | * | | | <u> </u> | | - | - | ! | 1 | | | ! | | | | | | <u> </u> | - | | | | | | i | | | | | | D | .10 | <u> </u> | > | D. | 049 | <u> </u> | <u> </u> | !
 | | 1. | • | <u> </u> | OK | | | ! | ! | <u> </u> | ! | | | | | | | | | | | | | 1 | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | | | | | }
 | _}_ | | | | 1 | : | <u> </u> | | | | | | | | | | | | | ! | | <u> </u> | <u> </u> | <u> </u> | ! | | | - | | ! | | | | | <u> </u> | <u> </u> | ! | ! | _ | | | | | | | | | | | <u>.</u> | | | <u> </u> | ! | <u> </u> | | | <u> </u> | | | | | | !
! | ! | | : | | _ | | | 5) | Li | re s | SPAN | 5 | LVI | 406 | 1111 | 2 | EQUI | cem | ENT! | <u>\$:</u> | <u> </u> | | | <u> </u> | | : | | | | ļ
 | | <u> </u> | | : | | | | | | | | | | | | | | <u> </u> | - | <u> </u> | ļ | | | | | <u> </u> | | | | | <u> </u> | | | | | | | | | | | 包 | ECT | | 280 | بند | Fo | <u>k_</u> | يم | رحا | A | <u></u> | <u>~0</u> | 1710 | <u></u> | (ef | : જ઼ | - | اعت |)_ | <u> </u> | | | ! | | | | | | | | OF | Sēv | تعيق | . Δ | <u> </u> | CAT | S | | ستط | - M | END | A710 | <u>us</u> | B | <u>රුවා</u> | | PON | Δι | PLK | A-7)(| للأ | | | | | | | | | | 4 6 | BSE | RUA | رامي. | \$ | <u> </u> | | | <u> </u> | <u> </u> | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | Ea'i | <u>). </u> | <u> </u> | ! | | ! | | | <u> </u> | | * | Peau | DED | | | | | | | | | | | | | | | MW | . Ge | <u>8.</u> | <u> -</u> | 18 | 016 | <u>ح</u> | | <u> </u> | | | | | | 32 | ۰ - م | 380 | 16 | 5 | <u> </u> | <u> </u> | _ | | | | | | | | | Pw | -748 | ۶ ع | م | LX67 | <u>) :</u> | 8 | 010 | 5_ | | | 1 | | <u> </u> | | 55 | دط | | <u></u> | | | _ | | | | | | | | | Bno | 55 | St | res | 574 | ! | 290 | P 2 | 1 | | | | | | | 460 | P | 1 | <u> </u> | | | ! | | | | | | | | | 1 1 | | | ! | į | ! | 1 | lbs | 1 | | | | <u> </u> | | 4 | 0/19 | 0 1 | b 5. | | | | | | | | 1 1 | l i | . | | i | 1 1 | | | ı | ; | i | 1 | 1 | 1 | 1 | | 1 | i . | ! | 1 | i | l | ì | 1 | l | , , | i | | White Oak Sanitary Landfill ## APPENDIX C **HELP Model Results on Estimating Leachate Generation** MARCH 30, 1992 #### BARE GROUND #### LAYER 1 #### VERTICAL PERCOLATION LAYER | THICKNESS | = | 12.00 INCHES | |----------------------------------|---|----------------------| | POROSITY | = | 0.5010 VOL/VOL | | FIELD CAPACITY | = | 0.2837 VOL/VOL | | WILTING POINT | = | 0.1353 VOL/VOL | | INITIAL SOIL WATER CONTENT | = | 0.2837 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | = | 0.000189999992 CM/SE | ## LAYER 2 #### VERTICAL PERCOLATION LAYER | | | TICOTEST TON | TRATER | | |---------------------|-----------|--------------|----------------|--------| | THICKNESS | | = | 180.00 INCHES | | | POROSITY | | = | 0.5200 VOL/VOL | | | FIELD CAPACITY | | = | 0.2942 VOL/VOL | | | WILTING POINT | | = | 0.1400 VOL/VOL | | | INITIAL SOIL WATER | | = | 0.2942 VOL/VOL | | | SATURATED HYDRAULIC | CONDUCTIV | /ITY = | 0.000199999980 | CM/SEC | ## LAYER 3 #### LATERAL DRAINAGE LAYER | THICKNESS | = 24.00 INCHES | | |----------------|-----------------|---| | POROSITY | = 0.4570 VOL/VO | L | | FIELD CAPACITY | = 0.1309 VOL/VO | ٦ | WILTING POINT = 0.0580 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2466 VOL/VOL SATURATED HYDRAULIC CONDUCTIVITY = 0.001000000047 CM/SEC ## LAYER 4 #### LATERAL DRAINAGE LAYER THICKNESS = 0.25 INCHES POROSITY = 0.9000 VOL/VOL FIELD CAPACITY = 0.0520 VOL/VOL WILTING POINT = 0.0490 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0520 VOL/VOL SATURATED HYDRAULIC CONDUCTIVITY = 1.00000000000 CM/SEC SLOPE = 8.00 PERCENT DRAINAGE LENGTH = 340.0 FEET ### LAYER 5 #### BARRIER SOIL LINER WITH FLEXIBLE MEMBRANE LINER THICKNESS = 24.00 INCHES POROSITY = 0.4300 VOL/VOL FIELD CAPACITY = 0.3663 VOL/VOL WILTING POINT = 0.2802 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4300 VOL/VOL SATURATED HYDRAULIC CONDUCTIVITY = 0.000000100000 CM/SEC LINER LEAKAGE FRACTION = 0.00010000 ## LAYER 6 #### VERTICAL PERCOLATION LAYER in presidentia THICKNESS = 12.00 INCHES POROSITY = 0.4096 VOL/VOL FIELD CAPACITY = 0.2466 VOL/VOL WILTING POINT = 0.1353 VOL/VOL INITIAL SOIL WATER CONTENT = 0.1641 VOL/VOL SATURATED HYDRAULIC CONDUCTIVITY = 0.000009500000 CM/SEC ## GENERAL SIMULATION DATA SCS RUNOFF CURVE NUMBER = 91.61 TOTAL AREA OF COVER = 142800. SQ FT EVAPORATIVE ZONE DEPTH = 21.00 INCHES POTENTIAL RUNOFF FRACTION = 0.800000 UPPER LIMIT VEG. STORAGE = 10.6920 INCHES INITIAL VEG. STORAGE = 7.4437 INCHES INITIAL SNOW WATER CONTENT = 0.0000 INCHES INITIAL TOTAL WATER STORAGE IN SOIL AND WASTE LAYERS = 74.5813 INCHES SOIL WATER CONTENT INITIALIZED BY PROGRAM. ## CLIMATOLOGICAL DATA USER SPECIFIED RAINFALL WITH SYNTHETIC DAILY TEMPERATURES AND SOLAR RADIATION FOR ASHEVILLE NORTH CAROLINA MAXIMUM LEAF AREA INDEX = 3.30 START OF GROWING SEASON (JULIAN DATE) = 110 END OF GROWING SEASON (JULIAN DATE) = 296 ### NORMAL MEAN MONTHLY TEMPERATURES, DEGREES FAHRENHEIT | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT |
MAY/NOV | JUN/DEC | |---------|---------|---------|---------|---------|---------| | 36.80 | 39.10 | 46.40 | 55.70 | 63.30 | 69.80 | | 73.20 | 72.60 | 66.90 | 56.00 | 46.40 | 39.30 | ************************ | | | | | | | • | | | | |-----------------|--------|----|--------|-----|-------|----|---------|----|--| | AVERAGE MONTHLY | VALUES | IN | INCHES | FOR | YEARS | 74 | THROUGH | 79 | | | | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |--------------------|----------------|----------------|----------------|----------------|----------------|----------------| | PRECIPITATION | | | | | | | | TOTALS | 5.07
3.81 | 3.67
3.29 | 6.39
4.29 | 4.03
3.17 | 5.88
4.18 | 4.66
4.41 | | STD. DEVIATIONS | 1.65
2.60 | 2.62
1.51 | 2.05
2.84 | 2.40
1.54 | 4.05
0.96 | 2.14 | | RUNOFF | | | | | | | | TOTALS | 0.657
0.351 | 0.510
0.181 | 0.920
0.471 | 0.842
0.321 | 1.155
0.341 | 0.448 | | STD. DEVIATIONS | 0.401
0.356 | 0.636
0.312 | 0.953
0.613 | 0.990
0.273 | 1.524
0.245 | 0.344
0.350 | | EVAPOTRANSPIRATION | | | | | | | | TOTALS | 1.301
3.622 | 1.844 | 2.949
2.506 | 3.306
2.245 | 4.819
1.707 | 4.693
1.251 | | STD. DEVIATIONS | 0.272
1.427 | 0.240
1.586 | 0.070
1.208 | 0.613
0.776 | 1.272 | 1.260
0.280 | |----------------------|------------------|------------------|------------------|------------------|------------------|--| | LATERAL DRAINAGE FRO | OM LAYER | 4 | | | | | | TOTALS | 0.6121
0.9902 | 0.9173
0.8219 | 1.3402
0.6796 | 1.5438
0.6286 | 1.4944
0.5736 | 1.1851
0.6164 | | STD. DEVIATIONS | 0.1194
0.3465 | 0.2793
0.2527 | 0.5720
0.1866 | 0.7895
0.1793 | 0.6887
0.2036 | 0.4842 | | PERCOLATION FROM LAY | YER 5 | | | | | | | TOTALS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | STD. DEVIATIONS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | PERCOLATION FROM LAY | ER 6 | | | | | | | TOTALS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | STD. DEVIATIONS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | ****** | ***** | | - | | | والمراجع المستقل | ***************************** | | AVERAGE ANNUAL TOTALS & | (STD | . DEVIAT | IONS) | FOR | YEARS | 74 | THROUGH | 79 | |---|------------------------------------|------|----------|-------|-------|-------|-------------------|---------|-------| | | | | (IN | CHES) | | (CU. | FT. |) PER | CENT | | | PRECIPITATION | | 52.88 | (13. | 501) | 62 | 9272 | . 100 | .00 Z | | : | RUNOFF / | | 6.883 | (3. | 352) | 8 | 1902 | . 13 | .02 | | | EVAPOTRANSPIRATION / | | 33.690/ | (4. | 525) | 40 | 0911 | . 63 | .71 | | | LATERAL DRAINAGE FROM -
LAYER 4 | | 11.4031 | (4.: | 1092) | 13 | 5697 | . 21 | .56 🕊 | | | PERCOLATION FROM LAYER | 5 | 0.0001 | (0.0 | 0000) | • | 1. | . 0 | .00 - | | | PERCOLATION FROM LAYER | 6 | 0.0001 | (0.0 | 0000) | | 1. | . 0 | .00 | | | CHANGE IN WATER STORAGE | | 0.904 | (3.1 | L85) | 10 | 0760. | . 1 | .71 | | * | ****** | | | | | | والمتلاط والمتلاط | | | ********************** | | (INCHES) | (CU. FT.) | |-----------------------------------|----------|-----------| | PRECIPITATION | 5.80 | 69020.0 | | RUNOFF | 3.204 | 38126.1 | | LATERAL DRAINAGE FROM LAYER 4 | 0.0828 | 985.6 | | PERCOLATION FROM LAYER 5 | 0.0000 | 0.0 | | HEAD ON LAYER 5 | 0.1 | | | PERCOLATION FROM LAYER 6 | 0.0000 | 0.0 | | SNOW WATER | 2.46 | 29274.0 | | MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.430 | 5 | | MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.1372 | 2 | ************* | FINAL 1 | WATER STORAGE | E AT E | ND OF | YEAR | 79 | | |---------|---------------|--------|-------|------|----|--| |
 | | | | |------------|----------|-----------|---| | LAYER | (INCHES) | (VOL/VOL) | | | 1 | 5.00 | 0.4170 | | | 2 | 62.03 | 0.3446 | | | 3 | 5.65 | 0.2354 | | | 4 | 0.04 | 0.1682 | • | | 5 | 10.32 | 0.4300 | | | 6 | 1.97 | 0.1641 | | | SNOW WATER | 0.00 | | | | | | | | LAYER 2 = = 0.2837 VOL/VOL 0.1353 VOL/VOL 0.2837 VOL/VOL 0.000797999965 CM/SEC FIELD CAPACITY WILTING POINT . INITIAL SOIL WATER CONTENT SATURATED HYDRAULIC CONDUCTIVITY #### BARRIER SOIL LINER | THICKNESS | = | 18.00 INCHES | |----------------------------------|----|-----------------------| | POROSITY | = | 0.4300 VOL/VOL | | FIELD CAPACITY | == | 0.3663 VOL/VOL | | WILTING POINT | = | 0.2802 VOL/VOL | | INITIAL SOIL WATER CONTENT | = | 0.4300 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | == | 0.000000100000 CM/SEC | LAYER 3 #### VERTICAL PERCOLATION LAYER THICKNESS = 180.00 INCHES POROSITY = 0.5200 VOL/VOL FIELD CAPACITY = 0.2942 VOL/VOL WILTING POINT = 0.1400 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2766 VOL/VOL SATURATED HYDRAULIC CONDUCTIVITY = 0.000199999995 CM/SEC ## LAYER 4 #### VERTICAL PERCOLATION LAYER | | | | · | | |---------------------|----------------|---|----------------|--------| | THICKNESS | = | • | 6.00 INCHES | | | POROSITY | = | : | 0.4096 VOL/VOL | | | FIELD CAPACITY | ··· | = | 0.2466 VOL/VOL | | | WILTING POINT | | • | 0.1353 VOL/VOL | | | INITIAL SOIL WATER | | : | 0.2466 VOL/VOL | | | SATURATED HYDRAULIC | CONDUCTIVITY = | : | 0.000009500000 | CM/SEC | ## LAYER 5 #### VERTICAL PERCOLATION LAYER | THICKNESS | = | 180.00 INCHES | |----------------------------------|---|-----------------------| | POROSITY | = | 0.5200 VOL/VOL | | FIELD CAPACITY | = | 0.2942 VOL/VOL | | WILTING POINT | = | 0.1400 VOL/VOL | | INITIAL SOIL WATER CONTENT | = | 0.2766 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | = | 0.000199999995 CM/SEC | ## LAYER 6 #### VERTICAL PERCOLATION LAYER | THICKNESS | = | 6.00 INCHES | |----------------------------------|-----|-----------------------| | POROSITY | = | 0.4096 VOL/VOL | | FIELD CAPACITY | = | 0.2466 VOL/VOL | | WILTING POINT | = | 0.1353 VOL/VOL | | INITIAL SOIL WATER CONTENT | = | 0.2466 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | = ' | 0.000009500000 CM/SEC | ## LAYER 7 #### VERTICAL PERCOLATION LAYER | THICKNESS | = 180.00 | INCHES | |----------------------------------|----------|-------------------| | POROSITY | = 0.52 | 00 VOL/VOL | | FIELD CAPACITY | | 42 VOL/VOL | | WILTING POINT | | 00 VOL/VOL | | INITIAL SOIL WATER CONTENT | | 66 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | | 0199999995 CM/SEC | | | | | #### LAYER 8 #### LATERAL DRAINAGE LAYER | THICKNESS | = | 24.00 INCHES | |----------------------------------|-----|-----------------------| | POROSITY | = | 0.4096 VOL/VOL | | FIELD CAPACITY | = | 0.2466 VOL/VOL | | WILTING POINT | = | 0.1353 VOL/VOL | | INITIAL SOIL WATER CONTENT | = | 0.2466 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | = . | 0.000009500000 CM/SEC | ## LAYER 9 #### LATERAL DRAINAGE LAYER | THICKNESS | = | 0.25 INCHES | |----------------------------------|---|----------------------| | POROSITY | = | 0.9000 VOL/VOL | | FIELD CAPACITY | = | 0.0510 VOL/VOL | | WILTING POINT | = | 0.0490 VOL/VOL | | INITIAL SOIL WATER CONTENT | = | 0.0510 VOL/VOL | | SATURATED HYDRAULIC CONDUCTIVITY | = | 1.00000000000 CM/SEC | | SLOPE | = | 8.00 PERCENT | | DRAINAGE LENGTH | = | 340.0 FEET | ## LAYER 10 #### BARRIER SOIL LINER WITH FLEXIBLE MEMBRANE LINER | THICKNESS | = | 24.00 INCHES | |----------------------------|----------|-----------------------| | POROSITY | = | 0.4300 VOL/VOL | | FIELD CAPACITY | = | 0.3663 VOL/VOL | | WILTING POINT | = | 0.2802 VOL/VOL | | INITIAL SOIL WATER CONTENT | | 0.4300 VOL/VOL | | SATURATED HYDRAULIC CONDUC | TIVITY = | 0.000000100000 CM/SEC | | LINER LEAKAGE FRACTION | = | 0.00010000 | #### GENERAL SIMULATION DATA | SCS RUNOFF CURVE NUMBER | == | 74.98 | |--------------------------------|-----|-----------------| | TOTAL AREA OF COVER | = | 435600. SQ FT | | | = | 21.00 INCHES | | UPPER LIMIT VEG. STORAGE | = | 3.0060 INCHES | | INITIAL VEG. STORAGE | _ = | 2.8461 INCHES | | INITIAL SNOW WATER CONTENT | = | | | INITIAL TOTAL WATER STORAGE IN | | | | SOIL AND WASTE LAYERS | = | 177.9959 INCHES | #### SOIL WATER CONTENT INITIALIZED BY PROGRAM. ## CLIMATOLOGICAL DATA USER SPECIFIED RAINFALL WITH SYNTHETIC DAILY TEMPERATURES AND SOLAR RADIATION FOR ASHEVILLE NORTH CAROLINA MAXIMUM LEAF AREA INDEX = 3.30 START OF GROWING SEASON (JULIAN DATE) = 110 END OF GROWING SEASON (JULIAN DATE) = 296 ## NORMAL MEAN MONTHLY TEMPERATURES, DEGREES FAHRENHEIT | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |---------|---------|---------|---------|---------|---------| | 36.80 | 39.10 | 46.40 | 55.70 | 63.30 | 69.80 | | 73.20 | 72.60 | 66.90 | 56.00 | 46.40 | 39.30 | ******************** | AVERAGE | MONTHLY | VALUES | IN | INCHES | FOR | VFARC | 74 THPOMCH | 70 | | |---------|---------|--------|----|--------|-----|-------|------------|----|--| | | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC | |--------------------|----------------|----------------|----------------|----------------|----------------|----------------| | PRECIPITATION | | | | | | | | TOTALS | 5.07
3.81 | 3.67
3.29 | 6.39
4.29 | 4.03
3.17 | 5.88
4.18 | 4.66
4.41 | | STD. DEVIATIONS | 1.65
2.60 | 2.62
1.51 | 2.05 | 2.40
1.54 | 4.05
0.96 | 2.14
0.93 | | RUNOFF | | | | | | | | TOTALS | 3.810
0.177 | 2.016
0.098 | 2.827
0.842 | 1.781
0.552 | 1.540 | 0.420
3.104 | | STD. DEVIATIONS | 1.704
0.434 | 2.409
0.241 | 2.251
1.443 | 1.991
0.687 | 2.110
1.316 | 0.525
1.144 | | EVAPOTRANSPIRATION | | | | | | | | TOTALS | 1.358
3.579 | 1.888
3.530 | 3.019
2.361 | 3.359
2.346 | 4.391
1.794 | 4.353
1.315 | | STD. DEVIATIONS | 0.306
1.535 | 0.313
1.632 | 0.064
1.072 | 0.618
0.864 | 1.698
0.475 | 0.899
0.295 | PERCOLATION FROM LAYER 2 | STD. DEVIATIONS | TOTALS | 0.1387
0.0353 | 0.1185
0.0262 | 0.1309
0.0341 | 0.1138
0.0964 | 0.0901
0.1115 | 0.0528
0.1369 | |
--|---------------------|-------------------------|------------------|------------------|------------------|------------------|------------------|--| | TOTALS | STD. DEVIATIONS | 0.0010 | 0.0085 | 0.0054 | 0.0144 | | | | | TOTALS 0.0757 0.0696 0.0774 0.0757 0.0790 0.0772 0.0804 0.0810 0.0789 0.0820 0.0798 0.0828 STD. DEVIATIONS 0.0173 0.0146 0.0145 0.0127 0.0118 0.0102 0.0094 0.0094 0.0083 0.0071 0.0064 0.0055 0.0050 PERCOLATION FROM LAYER 10 TOTALS 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000 | IATEDAL DOATNACE ED | | , | 0.0407 | 0.0539 | 0.0320 | 0.0032 | | | 0.0804 0.0810 0.0789 0.0820 0.0798 0.0828 STD. DEVIATIONS 0.0173 0.0146 0.0145 0.0127 0.0118 0.0102 0.0094 0.0083 0.0071 0.0064 0.0055 0.0050 PERCOLATION FROM LAYER 10 TOTALS 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0 | DAILAND DRAINAGE FR | OM LAYER | 9 | | | | | | | 0.0094 0.0083 0.0071 0.0064 0.0055 0.0050 PERCOLATION FROM LAYER 10 TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | TOTALS | | | | | | | | | PERCOLATION FROM LAYER 10 TOTALS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 STD. DEVIATIONS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | STD. DEVIATIONS | | | | | | | | | 0.0000 | PERCOLATION FROM LA | YER 10 | | | | | | | | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | TOTALS | | | | | | | | | | STD. DEVIATIONS | | | | | | | | | | *** | • • • • · · · · · · · · | | | | | | | ************************* | AVERAGE ANNUAL | TOTALS & | (STD. | DEVIAT | IONS) | FOR | YEARS | 74 | THROU | JGH | 79 | |----------------|----------|-------|--------|-------|------|-------|-----|--------------|-------|------------| | • | | | (IN | CHES) | | (CU. | FT. | .) | PERCI | ENT | | PRECIPITATION | • , | | 52.88 | (13.5 | 501) | 1919 | 543 | 3. | 100.0 | 00 | | RUNOFF | | • | 18.477 | (9.4 | 193) | 670 | 722 | ? . . | 34.9 | 9 4 | EVAPOTRANSPIRATION 33.292 (4.232) 1208514. 62.96 PERCOLATION FROM LAYER 2 1.0851 (0.2060) 39390. 2.05 LATERAL DRAINAGE FROM 0.9394 (0.1227) 34101. 1.78 LAYER 9 PERCOLATION FROM LAYER 10 0.0001 (0.0000) 5. 0.00 CHANGE IN WATER STORAGE 0.171 (0.199) 6202. 0.32 ********************* | | PEAK DAILY | | | 79 | | |-------|------------|--|----------|-------|--| | | | | (INCHES) | (CU. | | | PRECI | PITATTON | | 5 90 | 2105/ | | | RUNOFF | 4.535 | 164614.0 | |-----------------------------------|--------|----------| | PERCOLATION FROM LAYER 2 | 0.0046 | 166.1 | | HEAD ON LAYER 2 | 6.6 | | | LATERAL DRAINAGE FROM LAYER 9 | 0.0028 | 100.8 | | PERCOLATION FROM LAYER 10 | 0.0000 | 0.0 | | HEAD ON LAYER 10 | 0.0 | | | SNOW WATER | 2.46 | 89298.0 | | MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.501 | .0 | | MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.130 | 6 | | | | | ***************** | | | | | | | | | |
 | | |----|--------|-------|---------|----|-----|----|------|----|------|--| | FJ | INAL V | WATER | STORAGE | ΑТ | END | OF | YEAR | 79 | | | | LAYER | (INCHES) | (VOL/VOL) | | |-------------|----------|-----------|--| | 1 | 2.99 | 0.4989 | | | 2 | 7.74 | 0.4300 | | | ÷, 3 | 49.97 | 0.2776 | | | 4 | 1.77 | 0.2947 | | | 5 | 49.71 | 0.2762 | | | 6 | 1.76 | 0.2936 | | | 7 | 49.63 | 0.2757 | | | 8 | 7.04 | 0.2933 | | | 9 | 0.01 | 0.0581 | | | 10 | 10.32 | 0.4300 | | | SNOW WATER | 0.00 | | | | | | | | OFFICE OF TOWN MANAGER ## Town of Waynesville July 31, 1991 Mr. Jack Horton Haywood County Manager Haywood County Courthouse Main Street Waynesville, NC 28786 Dear Mr. Horton: Mr. Gary McKay has spoken to me concerning the feasibility of the Town of Waynesville Sewer Plant accepting leachate from the new Haywood County Landfill. This letter is to inform you that the Town is willing to work with the County in this matter. Our plant has the capability to handle the expected quantities and disposal would be at our standard rate, assuming pretreatment by the Town is unnecessary. We anticipate no problems in accepting and treating this waste. Let me know if further information or assistance is needed. Sincerely, William M. Sutton Town Manager WMS:pm / RECEIVED
MAR S GMZ Tribble & Richardson, Inc. | Permit Renewal, Landfill Expansion | White Oak Sanitary Landfill | |--|------------------------------| | | | | | | | | | | | | | | | | APPENDIX D | | | Approval Letter for Amendments to Sediment and Erosion Con | trol Plan, February 26, 1997 | | | | | | | State of North Carolina Department of Environment, Health and Natural Resources Asheville Regional Office James B. Hunt, Jr., Governor Jonathan B. Howes, Secretary LAND QUALITY SECTION ## LETTER OF APPROVAL February 26, 1997 Mr. Jack Horton Haywood County Manager Courthouse Annex Waynesville, North Carolina 28786 Dear Mr. Horton: This office has reviewed the erosion and sedimentation control plan submitted for the project listed below. We find the plan to be acceptable and hereby issue this Letter of Approval. Please be advised that Title 15A, North Carolina Administrative Code 4B.0017(a), requires that a copy of the approved soil erosion control plan be on file at the job site. Also, you should consider this letter to give the Notice required by NCGS §113A-61(d) of our right of periodic inspection to ensure compliance with the approved plan. This plan approval shall expire three (3) years following the date of approval, if no land-disturbing activity has been undertaken, as is required by Title 15A NCAC 4B.0029. The State's Sedimentation Pollution Control Program is a performance-oriented program requiring protection of the natural resources and adjoining properties. If, following commencement of this project, it is determined that the plan is inadequate to meet the requirements of NCGS §113A-51 to 66, this office may require revisions to the plan and implementation of the revisions to ensure compliance with the Act. Please note that this approval is based in part on the accuracy of the information provided in the Financial Responsibility Form which you have provided. You are requested to file an amended form if there is any change in the information included on the form. In addition, it would be helpful if you notify this office of the proposed starting date for this project. Your cooperation is appreciated. Sincerely. To Dennis G. Owenby Asst. Regional Engineer DGO:gc Enclosures Enclosures Norman Divers, III Project name: White Oak Sanitary Landfill Borrow Area Location: Haywood County February 4, 1997 Date received: New submittal (X) Revision () Modification () Interchange Building, 59 Woodfin Place, Asheville, North Carolina 28801 | Permit Renewal, | Landfill | Expansion | |-----------------|----------|-----------| |-----------------|----------|-----------| White Oak Sanitary Landfill #### APPENDIX E **Design Calculations Specific to Waste Cell 4** IN WHITE OAK LANDPALL -x - FAILURE THROUGH NATURAL SOIL & LANDFILL - F.S. = 1.6 (STATIC) - FAILURE THROOGH LANDFILL - F.S. = 1.68 (STATIC) * ANALYSIS BY STABLEM (BISHOP METHOD OF SLICES) | | GR | LA | N | : ا | S] | ΓZ | E | | D. | IS | 5 | ΓF | ?] | CE | 31 | J٦ | Γ] | | N | I | 1 | E | S | T | • | R | E | P | 0 | R | T | • | | |---|--|-------|---------------------------|---------------|------|------------|-------------|----------|---|----|---|--------------------------------------|------------|-------------------------------|----------|---------------------------|---------------------------------|--------------------|---|------|-----|------|----|----|----|-------|------------------|---------------|---|---|---|---------------|------| | 100 | | 3 in. | 2 in. | 1-1/2 ic | . i. | 3/4 In. | 3/8 in. | | 7 | ı | (| 01 | | 120 | | 440 | ŀ | 09# | | 1140 | 000 | 20.5 | | | | | | | | | | | | | 90 | | | | | | | | | 1 | 80 | | | | | | - | \parallel | · | | 70
ER | | | | | | | \parallel | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | FINER
9 | | | \parallel | | | | | | | | | | | | | | | | _ | 1 | | | | | | | ╢ | \parallel | | | | | | | PERCENT
0 0 | | | | | | | | | + | | | | | ╫ | | | | | | | \ | | | | - | | $\frac{1}{1}$ | $\frac{1}{1}$ | | | | 1 | | | PER 40 | | | | | | | | | + | | | | | | | | | | | - | | | | + | + | | | # | | | | 1 | | | 30 | - | | $\frac{ \cdot }{ \cdot }$ | $\frac{1}{1}$ | | | | | + | | - | | | | | $\frac{ \cdot }{ \cdot }$ | + | - | | - | | | | + | | | | | | | + | $\frac{1}{1}$ | | | 20 | | | | | | | | | + | | | | | $\frac{\parallel}{\parallel}$ | | | | | | - | | | - | + | - | | | - | | + | - | + | | | 10 | | | | | | | | | - | | | | | | | | _ | | | 1 | | | | + | | | - | | | + | - | + | | | 0 | 0. | | | | | | | <u> </u>
0. | | | | | | 0.00 | | 2 | 00 10 | 00 | | | | 1(| 0.0 |) | | | | | 1.
RA | | S | IZ | Έ | - | | · · | 1 | | | | | | | | | г | | | · . | | | % +3'' % GRAVEL
● 0.0 5.3 | | | | | | | | % SAND
48.1 | | | | | | | | % SILT | + | 1 | | | | | | | LL PI D ₈₅ | | | | | | | | D ₆₀ D ₅₀ D ₃₀ | | | | | | | D ₁ | D ₁₅ D ₁₀ | | | | T | Cc | | | | Cu | | | | | | | | | • 44 | | 1 (|) | | | 55 | | 0 | | 66 | 1 | 0. | | | 1 | | | | | | | | | | | | - | 1 | | | | | | | | | | | | <u> </u> | | | | | | | | MATERIAL DESCRIPTION ● silty SAND, brown | | | | | | | | | | | | USCS | | | | | + | AASHTO
A-5(2.6) | <u> </u> | Project No.: 83507 | | | | | | | | | | | | Remarks:
Natural Moisture - 14.5% | II * | Project: Haywood Hydrogeo
● Location: ST-1 @ 20' | | | | | | | | | | | | | Micacous | Date: 6/18/98 GRAIN SIZE DISTRIBUTION TEST REPORT STEFFEN ROBERTSON AND KIRSTEN (U.S.) INC. Consulting Engineers and Scientists | ST | EFFE
Con | N F | ₹OE
I t i | BER
ng | E | oN
ng i | AN
ne | ID
er | K] | an | d | LN
Sc | ic
Sic | J.
en | s.
ti |)
st | ts
ts | NC | • | | | F | iç | ١. | No | . : · | | | | | | | | | GRAI | NSIZE | DIST | rib(| IOITU | V T | ES | T RE | PORT | | |-----------------------------------|---|-----------------|-------------------|-----------------|----------------|-----|------------------|----------|----------| | <u>ė</u> <u>ė</u>
100 <u> </u> | 2 in.
1-1/2 ir.
1 in.
3/4 in.
1/2 in.
13/8 in. | * | 20 | 40 | 1140 | | | | | | 90 | 80 | | | | | | | | | | | <u>20</u> | | | | | | | | | | | FINER
09 | | | | | | | | | | | 04 PERCENT | | | | | | | | | | | 04 PER | | | | | | | | | | | 30 | | | | | | | | | | | 20 | | | | | | | | | | | 10 | | | | | | | | | | | 0 | | | | | | | | | | | 200 100 | 10.0 | | 1.0
GRAIN | SIZE - m | O.1 | | 0. | 01 | 0. | | % +3''
• 0.0 | % GRAVEL
2.4 | | % S/
46 | | | 9 | SILT
5 | 1.0 | CLAY | | • 0.0 | 2.4 | | | | | | | | | | LL P | I 0 ₈₅ | D ₆₀ | D ₅₀ | D ₃₀ | D ₁ | 5 | D ₁₀ | Cc | C. | | • 39 1 | | 0.184 | - 30 | 30 | | | | | | | | | | | | | | | | <u> </u> | | • sandy SILT, | MATERIAL (| DESCRIPTI | ON | | | | SCS
ML | | (3.5) | | o samay size., | | | | | | | | | | | Project No.: 8 | | | | | | | rks: | | | | Project: Haywo | | | | | | | ural Mo
acous | isture - | 22.7 | | | | | | | | | | | | | Date: 6/18/98
GRAJ | IN SIZE DISTRI | BUTION T | EST REPO | RT | | | | | | | STEFFEN | ROBERTSON AN
Iting Engine | D KIRST | EN (U.S
Scient | .) INC. | | Fig | . No.: | | | TRIAXIAL SHEAR TEST REPORT STEFFEN ROBERTSON AND KIRSTEN (U.S.) INC. Fig. No.: Project: Haywood Hydrogeo Location: ST-1 @ 8' & 20' File: ST-1 Project No.: 83507 Fig. No.: #### ONE DIMENSIONAL CONSOLIDATION - ASTM D2435 | Project
Sample No.
Depth
Sample Type | Haywood Hydrog
ST-1
8'
Shelby tube | geo | | Project No. Tested By Checked By Date | 83507
SDD
TM
07/09/98 | | |---|---|-------------|-------------------------|---------------------------------------|--------------------------------|--------| | Campic Type | Cricipy tube | | | Date | 01700700 | | | | | | | | | | | INITIAL SAMP | N E DATA | | | | | | | Sample Dia (c | | 4.92 | | Specific Gravit | hv | 2.70 | | Init. Ht. (cm) | | 2.540 | | Assumed? | •9 | Yes | | Init. Vol (cm^3 |) | 48.34 | | Init. Void Ratio | ·
1 | 1.291 | | Init. Sample W | <u> </u> | 70.31 | | Init. Dry Densi | | 73.6 | | Init. Moisture | | 23.4% | | Initial Calculate | | 49.0% | | | | | | | | 70.075 | | CONSOLIDAT | ION DATA | | | | | | | Area (cm^2) | . * . | 19.031 | | | | | | Final Ht. (cm) | | 1.851 | | | | | | | | | | | | | | FINAL SAMPL | .E DATA | | | | | | | Final Wet Wt. | + Pan (g) | 389.51 | | Final Void Rati | io | 0.669 | | Final Dry Wt. + | Pan (g) | 372.61 | | Final Volume (| cm^3) | 35.23 | | Pan Wt. Only (| (g) | 315.64 | | Final Dry Dens | sity (pcf) | 101.0 | | Final Moisture | Content | 29.7% | | Final Calculate | ed Saturation | 100.0% | | | | | | | | | | TEST DATA | Load | Sample | Sample | Sample | | 2 | | 1201 0, (,, (| (psi) | Height (cm) | Vol. (cm ³) | Density (pcf) | | | | | 0.0 | 2.540 | 48.3 | 73.6 | | | | | 2.3 | 2.344 | 44.6 | 79.7 | | | | | 4.6 | 2.057 | 39.1 | 90.9 | | | | | 9.1 | 1.960 | 37.3 | 95.3 | | | | | 18.0 | 1.850 | 35.2 | 101.0 | | | | | 36.0 | 1.740 | 33.1 | 107.4 | | | | | | | | | | | | | Unload | | | | | | | |
18.0 | 1.743 | 33.2 | 107.2 | | | | | 9.1 | 1.750 | 33.3 | 106.8 | | | | | | 4 700 | | 400.4 | | | 33.5 33.8 35.2 106.1 105.2 101.0 9.1 4.6 2.3 0.0 1.762 1.777 1.851 DATE: 6-3-97, 13:19 Run: Isewer | * | | |--------------|--| | | | | | | | | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | × | | | * | | | × | | | * | | | 4 | | | * | | | C | | | 7 | | | × | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | | | | 7 | | | 7 | | | Ψ | | | :~ | | | > | | | | | | | | | ų | | | et | | | eet | | | heet | | | Sheet | | | Sheet | | | • | | | * | | | * | | | * * * | | | * * * * | | | **** | | | ***** | | | ***** | | | ***** | | | ****** | | | ***** | | | ****** | | | ****** | | | ******** | | | ********* | | | ********* | | | ********** | | | ********** | | | *********** | | | ********** | | | ********** | | | ************ | | | ********** | | | ************ | | | ************ | | | ************ | | | ************ | | | ************ | | | dwnS | Drop
[ft] | 0.0000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 |-----------|-----------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------------|---------|------------------|---|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----------------------------|----------------|------------------|---------|--------|--------|---------|---------| | | Drop [ft] | 0.0000 | 0.1000 | 0.1000 | 0.1000 | 8.0046 | 0.1000 | 0.7000 | 2.7000 | Ping. | Flow
[cfs] | | 0.0000 | 0.000 | 000000 | 0.000.0 | 0.0000 | 0.000 | 0.000.0 | | %
d/D | 3.4971 | 2.6654 | 2,4665 | 2.1995 | 2.1258 | 2.5038 | | | ct | | 0.0000 | 48.0000 | 48.0000 | 48.0000 | 48.0000 | 48.0000 | 48.0000 | 48.0000 | Rollah | NG.] | | 0.0100 | 0.0100 | 0.0100 | 0.0100 | 0.0100 | 0.0100 | 0.0100 | | Design Vel. (fps] | 1.5021 | 2.2518
2.4818 | 2.5281 | 2.9996 | 3.1563 | 2.4720 | 2.1379 | | Struct | Type | 57 null | | 50 mh | | | | | ov
m
m
ov
m | Pine | Descr. | ; | HDPE
HDPE | HDPE | HDPE | HDPE | HDPE | HDPE | HDPE | | Design
Flow
[cfs] | 0.0090 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0030 | 0600.0 | | Rim | Elev.
[ft] | 2587.4457 | 2567.490 | 2549.05 | 2530,83 | 2509.72 | 2479.14 | 2471.323 | 2462.0000 | Pine | Drop
(ft) | .====================================== | 7.0928 | 18.3638 | 18.1154 | 21.0106 | 24.9919 | 5.398I | 4.7000 | | Infilt.
Inflow
[cfs] | 0.000 | 0.000.0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 4 6 6 9 9 | Uiiset
[ft] | 0.0000 | | | | | | | 4 0.0000 | Pine | Slope
[ft/ft] | | 0.0200 | 0.0850 | 9680.0 | 0.1468 | 0.1700 | 0.0840 | 0.0553 | | Lateral
Flow #2
[cfs] | 0.0000 | 0.000.0 | 0.000 | 0.000 | 0.0000 | 0.000.0 | 0.0000 | | 4
 | Station
[ft] | 1 | | | | | | | 6 1215.8524
0 1300.8524 | Cen-Cen | 2DLength
[ft] | | 354.6421
69.3370 | 216.0448 | 202.0854 | 143.1445 | 147.0112 | 30.9408 | 85.0000 | | Lateral
Inv. #2
[ft] | 0.000 | 0.000.0 | 0.000.0 | 0.000 | 0.000 | 0.0000 | 0.000 | | | East
[ft] | 72088 | 721292.7954 | 721505.3832 | 721703.828 | 721699.2243 | 721690.4761 | 721722.8130 | 721807.5990 | Finish | Inv.
[ft] | | 2566.5372
2561.9844 | 2543.5206 | | • | 2471.1981 | 2464.7000 | | | Lateral
Name #2 | | | | | | | | | | North
[ft] | | -811776.8850 | -811738.3915 | -811776.5743 | -811919.6447 | -812066.3953 | -812107.9405 | -812028.8608 | Start | | ii
II | 2573.6300
2566.4372 | | | | 2496.1900 | | | | Lateral
Flow #1
[cfs] | 16
E8
11 | 0.000.0 | 0.000.0 | 0.000 | 0000 | 0.0000 | 0.000 | | Node | Label | | | Node | | | | | Node
Node | Pipe | Size
[in] |
 | 10.0000 | 10.0000 | 10.0000 | 10.0000 | 10.0000 | 10.0000 | 10.0000 | | Lateral
Inv. #1
[ft] | 0.0000 | 0.0000 | 0.0000 | 0000 | 0.000 | 0.0000 | 0.000.0 | | Pipe | Label | | PIPE | PIPE | PIPE | PIPE | PIPE | PIPE | 자
다
과 | auns | Elev
[ft] | 11 | 2573,6300 | 2561.3844 | 2542.9206 | 2524.7052 | 2495.6900 | 2463.5000 | 2458.2000 | . | Lateral
Name #1 | | | | | | | | DATE: 6-3-97, 13:19 Run: Isewer | HGL Elev
Out
[ft] | | | | | |--------------------------|--|--|-------------------------------|--| | HGL Elev
In
[ft] | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
In
If [ft] | | | | | Full
Flow
[cfs] | 4.0281
7.2180
8.3041
8.5279
10.9123
11.7438
9.9294
8.2567
6.6977
6.6977
Inength | 352.7127
65.4715
212.8094
198.8797
140.6354
145.0630
49.0047
27.0357
81.1237 | | | | Full
Perim
[in] | 31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
(ft] | 0.0000000000000000000000000000000000000 | | | | Full
Area
[ft2] | 0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
1.5454
0.5454
1.5454
1.5454
0.5454 | 000000000000000000000000000000000000000 | Flow
Regime | Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. | | Full
Vel
[fps] | .385
3.23
3.23
3.23
3.23
5.00
1.53
8.20
5.13
2.28
r-St
Leng | 352.7127
65.4715
212.8094
198.8797
140.6354
145.0630
49.0047
27.0357
81.1237 | Froude | 3.2536
3.2536
3.7054
3.7979
4.7732
5.1094
4.3733
3.6857 | | D.Point
Flow
[cfs] | 4.0281
7.2180
8.3041
8.5279
10.9123
11.7438
9.9294
8.2567
6.6977
Cen-Cen
3DLength
[ft] | 354.7131
654.7131
216.8239
202.8957
144.6782
149.1204
53.0341
31.0498 | Critical
Velocity
[fps] | 0.9327
0.9327
0.9327
0.9327
0.9327
0.9327
0.9327 | | Wet
Perim.
[in] | 3.762
3.279
3.173
3.154
2.977
2.926
3.043
3.178
3.338
3.338 | 0.0000 | Critical
Slope
[ft/ft] | | | Wet
Area
[ft2] | 0.0060
0.0040
0.0036
0.0036
0.0029
0.0032
0.0036
0.0036 | · | Critical
Depth
[in] | 0.0402
0.0402
0.0402
0.0402
0.0402
0.0402
0.0402 | | Design
Depth
[in] | 0.3497
0.2665
0.2497
0.2200
0.2126
0.2298
0.2504
0.2504
0.2760 | 0.0000 | EGL Elev
Out | 1 | DATE: 6-2-97, 15:37 Run: lsewer | Sump
Drop
[ft] | 0.0000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000 | | • | | | |------------------------|--|-----------------------------|--|-----------------------------|--| | Node
Drop
[ft] | 0.0000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.7000
0.7000 | | 0.0000000000000000000000000000000000000 | %
d/D | 3.4971
2.6654
2.4972
2.1995
2.1258
2.2644
2.5038 | | Struct
Dim.
[in] | 0.0000
48.0000
48.0000
48.0000
48.0000
48.0000
48.0000
48.0000 | Rough
Coeff
[MANNG] | 0.0100
0.0100
0.0100
0.0100
0.0100
0.0100
0.0100 | Design
Vel.
[fps] | 1.5021
2.2518
2.4818
2.5281
2.9996
3.1563
2.4720
2.1379 | | Struct
Type | 4457 null
7200 mh
4900 mh
0550 mh
7290 mh
1443 mh
3226 mh
3707 mh | Pipe
Descr. | HOPE
HOPE
HOPE
HOPE
HOPE
HOPE
HOPE | Design
Flow
[cfs] | 0600.0
0600.0
0600.0
0600.0
0600.0 | | | 2587.
2587.
2567.
2567.
2589.
2509.
2471.
2471.
2468. | Pipe
Drop
[ft] | 7.0928
4.4528
18.3638
18.1154
21.0106
24.9919
6.8181
2.6000 | Infilt.
Inflow
[cfs] | 0.0000000000000000000000000000000000000 | | Offset
[ft] | 0.0000
0.0000
0.0000
0.0000
3 0.0000
7 0.0000
19 0.0000
14 0.0000 | Pipe
Slope
[ft/ft] | 0.0200
0.0642
0.0850
0.0896
0.1468
0.1700
0.1295
0.0840 | Lateral
Flow #2
[cfs] | 00000.0 | | Station
[ft] | 19 0.0000
14 423.9791
14 423.9791
12 640.0239
18 842.1093
13 985.2537
11 1132.2649
10 1184.9117
10 1215.8524 | Cen-Cen
2DLength
[ft] | 354.6421
69.3370
206.0854
143.1445
147.0112
52.6468
30.9408
85.0000 | Lateral
Inv. #2
[ft] | 000000000000000000000000000000000000000 | | East
[ft] | 720881.7549
721229.9485
721229.7954
721205.3832
721703.8286
721699.2243
721690.4761
721722.8130
721745.4396 | Finish
Inv.
[ft] | 000
000
000
000 | Lateral
Name #2 | | | North
[ft] | -811873.4969
-811806.1747
-811776.8850
-811778.3915
-811776.57437
-812107.9405
-812086.8368 | Start
Inv.
[ft] | 74.0500
66.8572
62.3044
43.8406
25.6252
96.6100
71.5181
64.0000 | Lateral
Flow #1
[cfs] | | | | N N N N N N N N N N N N N N N N N N N | Pipe
Size
[in] | 10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000 | Lateral
Inv. #1
[ft] | 000000000000000000000000000000000000000 | | Pipe
Label | PIPE
PIPE
PIPE
PIPE
PIPE
PIPE | Sump
Elev
[ft] | 2574.0500
2566.3572
2561.8044
2543.3406
2525.1252
2496.1100
2471.0181
2463.5000
2458.2000
2453.5000 | Lateral
Name #1 | | DATE: 6-2-97, 15:37 Run: lsewer | HGL Elev
Out
[ft] | 000000000000000000000000000000000000000 | |
-------------------------|---|--| | HGL Elev
In
[ft] | EGL Elev
In [ft]
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | • | | Full
Flow
[cfs] | 4.0281
7.2180
8.3041
8.5279
10.9123
11.7438
10.2502
8.2567
6.6977
6.6977
6.6977
25.7127
65.4715
212.8094
198.8797
140.6354
145.0630
49.0530
27.0357 | | | Full
Perim
[in] | 131.4159
31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
31.4159
0.000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | | | Full
Area
[ft2] | 0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.5454
0.0450
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | Flow Regime Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. Supercrit. | | Full
Vel
[fps] | 7.3854
13.2340
15.2254
15.6356
20.0074
21.5319
18.7933
15.1384
12.2800
12.2800
12.2800
12.2800
12.2800
12.2800
12.28004
145.0630
49.0530
27.0357
81.1237 | Froude
Number
1.8931
3.2536
3.7054
3.7979
4.7732
5.1094
4.5041
3.6857 | | D.Point Flow [cfs] | 4.0281
7.2180
8.3041
8.5279
10.9123
11.7438
10.2502
8.2567
6.6977
6.6977
6.6977
6.6977
144.6782
149.1204
53.0864
31.0498 | Critical
Velocity
[fps]
0.9327
0.9327
0.9327
0.9327
0.9327
0.9327 | | Wet
Perim.
[in] | 3.7623
3.2799
3.1738
3.1541
2.9771
2.9264
3.0211
3.1781
3.3380
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | Critical
Slope
[ft/ft]
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051
0.0051 | | Wet
Area
[ft2] | 0.0060
0.0036
0.0036
0.0033
0.0031
0.0036
0.0036
0.0042 | Critical Depth [in] [in] 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 0.0402 | | Design
Depth
[in] | 0.3497
0.24665
0.2497
0.2200
0.2126
0.2504
0.2504
0.2760
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | EGL Elev Out [ft] | | STEFFEN | ROBE | RTSON | & | KIRSTEN | |---------|-----------|-----------|---|------------| | C | onsulting | Engineers | 8 | Scientists | PROJECT: Hay wood C. fy. Place III NO. CALCULATED BY: DATE: 5/19/97 CHECKED BY: JHB DATE: 8/13/98 SHEET / OF of Previous Phase Cell trea A = 3.3 acres Area of Nan PhaseII Cell A = 2 acres (which includes approximately lacre over lap w/ prior permitted place) Leachat Generation: (Determine By Itely Model in Premous Transition Plan) · Avg Monthly = 84,643 gal (open) 755 (closed) 21,271 · Peak Daily Value = 7, 377 gal (open) 755 (closed Lechate Generation: (Estimated For New Phase II Cell) · Aus Menthly 84,643 941 Quara 3,3 4C/05 Que = 51,300 gal Aug hon // (open) * Peak Daili 7,377 gal = Qzacre, Qzacra = 4,471 gal) Peak Daily ofen | STEFFEN | ROBE | RTSON | & | KIRSTEN | |---------|----------|-----------|---|------------| | Co | nsulting | Engineers | 8 | Scientists | PROJECT: Hay wool Cty. Phase TENO. CALCULATED BY: DATE: 5/11/17 CHECKED BY: JHB DATE: 8/13/98 SHEET 20F2 Leachate Congration: (Estimated For Wew Pase III Cell) · Aug Monthy (closed) $$\frac{21, 271 \text{ gal}}{10 \text{ acre}} = \frac{Q_{707}}{12 \text{ acre}}$$ · Peak Daily (Close 2) 2002 755 gal. = QTOT 12 Gare QTOT = 906 gal | closed 12 que Leachete Commation: (Estimate Month / High Morage For New Place III) Monthly High Average @ Previous Transition = 93,13594/ Aug Renthly Fish Value - Phase III 3,135 gal = Q = D = 56,445 gal PROJECT: Hay wood Ct., - WOSLF NO. 83505 CALCULATED BY: Atl DATE: 6/5/46 CHECKED BY: JHB DATE: 8/13/98 SHEET O ++ Calculate Leachate Coneration as Flow Rake Peak Daily Value (open Cell II) Peak Daily Value = 4, 471 gel. Assume Spread over Idal Q = 4,471901 | 1dal 1846- 1 min 1 CF | day 246 | 60 see | and = 0.00 7 CFS Peak Daily Value (Closed Total LF) Peak Daily Value = 906 gil Assume Spread over Iday a = 906 gal | 1da/ 1337 CF = 0,00 14 CFS | PROJECT: Haywood Cy | Plase III NO. | |---------------------|---------------| | CALCULATED BY: 111 | DATE. | CALCULATED BY: //// DATE: CHECKED BY: JHB DATE: 8/15/9% SHEET Soil Resourse Volume Cales A = Zacres (with lacre overlapping prior permitted Phase) = 87, 120 SF Construction: Assure Additional construction of Linearies 1. Sub Base: IFT Thick V= 87, 120 SF (1FT) = 87,120 CF = 3, ZZ7 CY 2. Clay Liner: ZFT Thick V = (2 F1)(87,1205F) = 174, 240 CF = 6,453 CY 3.5 tone (#57): 1F+ Thick Area of Bollom of LF A = (380 Ft) (150 Ft) = 5-7,000 SF V = (57,000 SF)(1FI) = 57,000 CF= 2,111 Cy 4. Protective Drainese Layor: 1 Ft. Thick A = Zacres = 87,1205F V= 87, 120 CF = 3,227 CY | | PROJECT: | NO. | |---|-----------------|---------------| | , | CALCULATED BY: | DATE: | | | CHECKED BY: JHB | DATE: 8/13/98 | | | SHEET OF | | # Cap Construction 1. Clay Liner: 1.5 Fx Thick A = Zacres = 87,120 SF V = A(1.5') = 130,680 CF = 4,840 CY 2. Enosion Layer (Vegetative Cover): 0.5 Ft Thick A = Zacre = 87,126 S F V = A(0.5) = 43,560 CF = 1,613 CY Operation at Matorial 1. Daily Corer Capacity of Land Kill = 112,000 c/ This includes Trash + Daily Cover + Internativale Cover + Cop Material) Vol (Trash + Daily / Inter modicale Cover) = 112,000 cy - (Vol Cap) = 112,000 cy - 6453 = 105,547 cy Re 8:1 Trash to Soil Ratho Volume Laste = 93,820 cy Volume Cover/Inter metrale Soil = 11,727 cy PROJECT: Hay and Chy Phase III NO. CALCULATED BY: AAL DATE: 5/19/97 CHECKED BY: JHB DATE: 8/13/98 SHEET / OF 4 Pipe has 4 Rous o 3/8" Diam. par Forations Diam of Pipe = 10" L(pipe) = 320' Slope = 2% = .02 FIFT Assumins 12" Hoad on liner is of Lainable # Holes = 320' (12") (4/Hole) = 5,120 Holes 2,560 Holes w/ 2" Head 2,560 Hole a/ 10" Head Area of Holes = TT 12 = TT (3/8 in) 2 = , 1104 in 2 = ,000 77 F12 | | PROJECT: | NO. | |---|-------------------|--------------| | • | CALCULATED BY: | DATE: | | | CHECKED BY: JI-18 | DATE:8/13/47 | | | SHEET 2 OF 4 | | Find Capacity of Flow For Holos Entains pipe Use Orifice Egn. $Q = C A \sqrt{zgh}$ Q = Flow CFS A = Area orifice (FX)² g = Accelleration gravity F/sec² = 32.7 F/s² h = head on orifice = 2 in top set of Itales = 10:n Bothin set holes H= tholes & Aran Holes = (5120)(.00077F+2) = 3.94 F+2 1/2 3.94 - 1.97 F+2 $Q = (A \sqrt{29}I_1 + (A \sqrt{29}I_2)$ $= .6(1.97)\sqrt{2(32.2)(\frac{2}{12})} + .6(1.97)\sqrt{2(32.2)(\frac{16}{12})}$ = 1.182[3.28 + 7.326] = 12.53 CFS | | PROJECT: | NO. | | |---|-----------------|---------------|---| | 7 | CALCULATED BY: | DATE: | _ | | | CHECKED BY: THB | DATE: 8/13/92 | _ | | | SHEET 3 OF 4 | | _ | Flow Copacity Of Lanciste Pipe Q= 1.49 AR 2/3 5 1/2 Assume 1= .00 9 A = TI/2 = TI (10)2 = 78, 54/12 = .545 51= 5 = 20/0 = .02 Ft/Ft R = Ap, Assume Full a not up der pressure $P = \pi d = \pi \left(\frac{10}{12} \right) = 2.618 F +$ R = 0.2083 Qallmoble = 1.49 (.545 F12)(.2083) 3/3 (.02) 1/2 - 4, 48 CFS | | PROJECT: | NO. | |---|--------------------|---------------| | , | CALCULATED BY: AAN | DATE: 5/197 | | | CHECKED BY: JHB | DATE: 8/13/93 | | | SHEET 4 OF 4 | | Q Holes = 12.53 CFS Q pipe capacity = 4.48 CFS Q Holes > Apipe capacity = Apipe controls Mas Peak Daily Flow, De termine day Relation of HC=LP Andel Aparity = 4, 471 gal/day = 597. 77 cf/dat = 24.91 cf/hr = 0.415 cf/min = 0.007 cfs apeak daily = .007 CFS < < appe = 4.48 CFS ... Leachate drainasa pipe More than Adequate ### Haywood County Perimeter Ditch 1 Worksheet for Triangular Channel | Project Description | | | |---------------------|--|--| | Project File | n:\a_srk\jobs\92801_tondu\permdtch.fm2 | | | Worksheet | East Perimeter Ditch | | | Flow Element | Triangular Channel | | | Method | Manning's Formula | | | Solve For | Channel Depth | | | Input Data | | |----------------------|----------------| | Mannings Coefficient | 0.030 | | Channel Slope | 0.049000 ft/ft | | Left Side Slope | 2.000000 H:V | | Right Side Slope | 2.000000 H:V | | Discharge | 11.34 cfs | | Results | | | |------------------------|----------|-----------------| | Depth | 0.95 | ft | | Flow Area | 1.82 | ft ² | | Wetted Perimeter | 4.27 | ft | | Top Width | 3.82 | ft | | Critical Depth | 1.15 | ft | | Critical Slope | 0.018308 | ft/ft | | Velocity | 6.22 | ft/s | | Velocity Head | 0.60 | ft | | Specific Energy | 1.56 | ft | | Froude Number | 1.59 | | | Flow is supercritical. | | | ### Perimeter Ditch 1 Cross Section Cross Section for Triangular Channel | Project Description | | | |---------------------|--|--| | Project File | n:\a_srk\jobs\92801_tondu\permdtch.fm2 | | | Worksheet | East Perimeter Ditch | | | Flow Element | Triangular Channel | | | Method | Manning's Formula | | | Solve For | Channel Depth | | | Section Data | | |----------------------|----------------| | Mannings Coefficient | 0.030 | | Channel Slope | 0.049000 ft/ft | | Depth | 0.95 ft | | Left Side Slope | 2.000000 H: V | | Right Side Slope | 2.000000 H:V | | Discharge | 11.34 cfs | ### Ditch 2 Worksheet for Trapezoidal Channel | Project Description | | | |---------------------|--|--| | Project File | n:\a_srk\jobs\92801_tondu\permdtch.fm2 | | | Worksheet | Perimeter Ditch 2 | | | Flow Element | Trapezoidal Channel | | | Method | Manning's Formula | | | Solve For | Channel Depth | | |
Input Data | | | |----------------------|----------------|--| | Mannings Coefficient | 0.035 | | | Channel Slope | 0.050000 ft/ft | | | Left Side Slope | 2.000000 H:V | | | Right Side Slope | 2.000000 H:V | | | Bottom Width | 2.00 ft | | | Discharge | 13.68 cfs | | | Results | | | |------------------------|--------|----------| | Depth | 0.70 | ft | | Flow Area | 2.40 | ft² | | Wetted Perimeter | 5.15 | ft | | Top Width | 4.81 | ft | | Critical Depth | 0.85 | ft | | Critical Slope | 0.0235 | 04 ft/ft | | Velocity | 5.70 | ft/s | | Velocity Head | 0.51 | ft | | Specific Energy | 1.21 | ft | | Froude Number | 1.43 | | | Flow is supercritical. | | | ### Ditch 2 Cross Section Cross Section for Trapezoidal Channel | Project Description | | | |---------------------|--|--| | Project File | n:\a_srk\jobs\92801_tondu\permdtch.fm2 | | | Worksheet | Perimeter Ditch 2 | | | Flow Element | Trapezoidal Channel | | | Method | Manning's Formula | | | Solve For | Channel Depth | | | Section Data | | | |----------------------|----------|-------| | Mannings Coefficient | 0.035 | | | Channel Slope | 0.050000 | ft/ft | | Depth | 0.70 | .ft | | Left Side Slope | 2.000000 | H : V | | Right Side Slope | 2.000000 | H : V | | Bottom Width | 2.00 | ft | | Discharge | 13.68 | cfs | # STEFFEN ROBERTSON AND KIRSTEN (NC), INC. REPORT DISTRIBUTION RECORD This form to be completed for each copy of the report produced and bound in as the final page of the report. | REPORT NO.: | 83505/1 REV 1 | |-------------|---------------| | COPY NO.: | 8 | | NAME/TITLE | COMPANY | COPY | DATE | AUTHORIZED BY | |-----------------------|----------------------|------|----------|-----------------------| | William Sessoms | NCDENR | 1-3 | 8/17/98 | S.V. MacQueen, PE | | Joe Walker | Haywood County, N.C. | 4 | 8/17/98 | S.V. MacQueen, PE | | J.H.M. Barringer, EIT | SRK | 5 | 8/17/98 | S.V. MacQueen, PE | | Library | SRK | 6 | 8/17/98 | S.V. MacQueen, PE | | William Sessoms | NCDENR | 7-8 | 10/30/98 | J.H.M. Barringer, EIT | | | | | | | | | | | | | | | | | : | | | : | APPROVAL SIGNATURE: **COPYRIGHT** These technical reports (a) enjoy copyright protection and the copyright vests in Steffen, Robertson and Kirsten (NC), Inc. unless otherwise agreed to in writing; (b) may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder. Mr. Edwin Russell Haywood County Manager Courthouse Waynesville, NC 28786 Re: Haywood County Landfill - Permit #44-03 The enclosed plan is approved in accordance with G.S. 130-166. Permit Number 44-03 is: issued under conditions provided for on the permit. If you have any questions, please advise. Respectfully, J. Gordon Layton, Environmental Engineer Solid & Hazardous Waste Management Branch Environmental Health Section JGL:ns Enclosure cc: J. W. Moore, Jr. George Jensen Page 1 of 3 PERMIT NO. 44-03 DATE ISSUED 6/24/82 STATE OF NORTH CAROLINA DEPARTMENT OF HUMAN RESOURCES Division of Health Services P.O. Box 2091 Raleigh 27602 ### SOLID WASTE PERMIT | HAYWOOD COUNTY 1 | s hereby issued a permit to | |--|--| | operate a SANITARY LANDFILL | | | located ON S.R. 1802 | · · · · · · · · · · · · · · · · · · · | | in accordance with Article 13B of the General Statut | es of North Carolina and all | | rules promulgated thereunder and subject to the cond | itions set forth in this | | permit. The facility is located on the below descri | bed property. | | TRACT I | | | BEGINNING at an iron pipe in the fence line, said iron min. East 562 feet from a chestnut on the bank of deg. 00 min. West 125.79 feet to a point in the center road, also being the center of the proposed 60 foot. North Carolina State Highway Commission, granted to over the property retained by the parties of the fir Road, said easement being set out hereinafter; thence 225.63 feet to an iron pipe on the watershed of the shed of the ridge five calls as follows: South 5 deto an iron pipe, South 15 deg. 59 min. West 142.81 foldeg. 32 min. West 184.39 feet to an iron pipe; Sofeet to an iron pipe; and South 13 deg. 18 min. West on the ridge; thence with the ridge line four calls 30 min. East 162.41 feet to an iron pipe; South 45 deg. 29 min. East 242.45 feet to an iron pipe; the last 490.18 feet to an iron pipe; | er of the existing 10 foot road to be constructed by the the party of the second part st part from the Francis Cove e South 59 deg. 00 min. West ridge; thence with the waterg. 01 min. East 109.01 feet eet to an iron pipe; South uth 10 deg. 15 min. East 119.51 195.61 feet to an iron pipe as follows: South 2 deg. eg. 15 min. East 81.29 feet eet to an iron pipe; and North ence North 39 deg. 25 min. | IS Form 2871 (Rev. 1/82) olid & Hazardous Waste Management Branch Environmental Health Section Page 2 of 3 PERMIT NO. 44-03 DATE ISSUED 6/24/82 ### SOLID WASTE PERMIT Property Description (Continued): thence North 83 deg. 34 min. East 439.74 feet to an iron pipe; thence North 17 deg. 34 min. West 65.74 feet to an iron pipe; thence North 30 deg. 15 min. West 267.91 feet to an iron pipe; thence North 26 deg. 15 min. West 199.26 feet to an iron pipe; thence North 72 deg. 23 min. West 537.67 feet to the BEGINNING, containing 20.07 acres. #### TRACT II BEING certain real property adjacent to the 20.07 acre tract described above and lying between same and north of a road to be cut through the property of the parties of the first part as has been heretofore mutually agreed upon, consisting of 4 acres more or less. DHS Form 2871 (Rev. 11/80) Solid & Hazardous Waste Management Branch PERMIT NO. 44-03 DATE ISSUED 6/24/82 #### SOLID WASTE PERMIT #### Conditions of Permit: - 1. This permit may be subject to review at an administrative hearing upon petition of anyone whose legal rights, privileges and duties may have been affected by the issuance thereof. - This permit shall not be effective unless the certified copy is filed in the register of deeds' office, in the grantor index under the name of the owner of the land in the county or counties in which the land is located. - 3. The "Certification of Recordation of Solid Waste Permit" must be returned to the Solid & Hazardous Waste Management Branch prior to receiving solid waste at the site. - 4. This solid waste disposal site is permitted to receive solid waste as defined in 10 NCAC 10G, .0101(31), except that hazardous waste, liquid waste and any other wastes that may pose a threat to the environment or the public health are prohibited from disposal at this site unless-prior authorization is obtained from the Division of Health Services. - 5. This permit is for construction according to plans by Butler & Associates dated May, 1982. Any modification or deviation from the approved plans shall be approved by the N.C. Solid & Hazardous Waste Management Branch. DHS Form 2871 (Rev. 11/80) Solid & Hazardous Waste Management Branch